1
|
Steinmetz D, Pausch A. Novel pseudomomentum-translational sum rule for the molecular Berry curvature. J Chem Phys 2025; 162:154109. [PMID: 40231881 DOI: 10.1063/5.0261461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
The molecular Berry curvature plays an important role for electronic structure calculations within the adiabatic Born-Oppenheimer approximation and is connected to many magnetic phenomena such as the Aharonov-Bohm and the chirality-induced spin selectivity effect. For molecules in external magnetic fields, the Berry curvature is essential to achieve a qualitatively correct description of nuclear motion. Here, it is responsible for screening the Lorentz forces acting on moving nuclear charges. This connection has recently been exploited to derive a new type of population analysis known as Berry charges. In this work, we derive a novel sum rule for the molecular Berry curvature. This pseudomomentum-translational sum rule is then used to reveal the connection between Berry charges and the well-known generalized atomic polar tensor (GAPT) charges. Furthermore, we present an efficient integral-direct implementation of the molecular Berry curvature for molecules in finite magnetic fields into the Turbomole program suite. This is used to further demonstrate the connection between Berry and GAPT charges for a variety of larger molecules, comparing the results to other established types of partial charges.
Collapse
Affiliation(s)
- Dominik Steinmetz
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Ansgar Pausch
- Theoretical Chemistry, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Tang D, Liu A, Culpitt T, Hammes-Schiffer S, Li X. Simulating Magnetic Field-Driven Real-Time Quantum Dynamics Using London Nuclear-Electronic Orbital Approach. J Chem Theory Comput 2025. [PMID: 40249877 DOI: 10.1021/acs.jctc.5c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Harnessing a static magnetic field to drive molecular vibrations presents a promising avenue for controlling chemical processes. However, the coupling of nuclear dynamics with an external magnetic field has largely been explored only through classical approximations. In this work, we introduce a time-dependent quantum dynamics formalism based on London nuclear-electronic orbitals, enabling the simulation of magnetic field-driven quantum dynamics. Through simulations of HCN and H2CO molecules, we provide a detailed analysis of how the relative orientation of the magnetic field and vibrational symmetry influence the resulting quantum dynamics. Our findings reveal field-induced mode couplings and symmetry-dependent effects, offering new insights into the role of magnetic fields in vibrational control. This work establishes a quantum mechanical framework for understanding and manipulating vibrational dynamics using external magnetic fields, paving the way for novel applications in spectroscopy, reaction dynamics, and quantum control.
Collapse
Affiliation(s)
- Diandong Tang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Aodong Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tanner Culpitt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Tao Z, Qiu T, Bian X, Duston T, Bradbury N, Subotnik JE. A basis-free phase space electronic Hamiltonian that recovers beyond Born-Oppenheimer electronic momentum and current density. J Chem Phys 2025; 162:144111. [PMID: 40226852 DOI: 10.1063/5.0260731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
We present a phase-space electronic Hamiltonian ĤPS (parameterized by both nuclear position X and momentum P) that boosts each electron into the moving frame of the nuclei that are closest in real space. The final form for the phase space Hamiltonian does not assume the existence of an atomic orbital basis, and relative to standard Born-Oppenheimer theory, the newly proposed one-electron operators can be expressed directly as functions of electronic and nuclear positions and momentum. We show that (i) quantum-classical dynamics along such a Hamiltonian maintains momentum conservation and that (ii) diagonalizing such a Hamiltonian can recover the electronic momentum and electronic current density reasonably well. In conjunction with other reports in the literature that such a phase-space approach can also recover vibrational circular dichroism spectra, we submit that the present phase-space approach offers a testable and powerful approach to post-BO electronic structure theory. Moreover, the approach is inexpensive and can be immediately applied to simulations of chiral induced spin selectivity experiments (where the transfer of angular momentum between nuclei and electrons is considered critical).
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Tian Qiu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Xuezhi Bian
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Titouan Duston
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Nadine Bradbury
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Joseph E Subotnik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Culpitt T, Tellgren EI, Peters LDM, Helgaker T. Non-adiabatic coupling matrix elements in a magnetic field: Geometric gauge dependence and Berry phase. J Chem Phys 2024; 161:184109. [PMID: 39530363 DOI: 10.1063/5.0229854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Non-adiabatic coupling matrix elements (NACMEs) are important in quantum chemistry, particularly for molecular dynamics methods such as surface hopping. However, NACMEs are gauge dependent. This presents a difficulty for their calculation in general, where there are no restrictions on the gauge function except that it be differentiable. These cases are relevant for complex-valued electronic wave functions, such as those that arise in the presence of a magnetic field or spin-orbit coupling. In addition, the Berry curvature and Berry force play an important role in molecular dynamics in a magnetic field and are also relevant in the context of spin-orbit coupling. For methods such as surface hopping, excited-state Berry curvatures will also be of interest. With this in mind, we have developed a scheme for the calculation of continuous, differentiable NACMEs as a function of the molecular geometry for complex-valued wave functions. We demonstrate the efficacy of the method using the H2 molecule at the full configuration-interaction (FCI) level of theory. In addition, ground- and excited-state Berry curvatures are computed for the first time using FCI theory. Finally, Berry phases are computed directly in terms of diagonal NACMEs.
Collapse
Affiliation(s)
- Tanner Culpitt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurens D M Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
5
|
Culpitt T, Tellgren EI, Pavošević F. Unitary coupled-cluster for quantum computation of molecular properties in a strong magnetic field. J Chem Phys 2023; 159:204101. [PMID: 37991157 DOI: 10.1063/5.0177417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
In truncated coupled-cluster (CC) theories, non-variational and/or generally complex ground-state energies can occur. This is due to the non-Hermitian nature of the similarity transformed Hamiltonian matrix in combination with CC truncation. For chemical problems that deal with real-valued Hamiltonian matrices, complex CC energies rarely occur. However, for complex-valued Hamiltonian matrices, such as those that arise in the presence of strong magnetic fields, complex CC energies can be regularly observed unless certain symmetry conditions are fulfilled. Therefore, in the presence of magnetic fields, it is desirable to pursue CC methods that are guaranteed to give upper-bound, real-valued energies. In this work, we present the first application of unitary CC to chemical systems in a strong magnetic field. This is achieved utilizing the variational quantum eigensolver algorithm applied to the unitary coupled-cluster singles and doubles (UCCSD) method. We benchmark the method on the H2 molecule in a strong magnetic field and then calculate UCCSD energies for the H4 molecule as a function of both geometry and field angle. We show that while standard CCSD can yield generally complex energies that are not an upper-bound to the true energy, UCCSD always results in variational and real-valued energies. We also show that the imaginary components of the CCSD energy are largest in the strongly correlated region. Last, the UCCSD calculations capture a large percentage of the correlation energy.
Collapse
Affiliation(s)
- Tanner Culpitt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | | |
Collapse
|
6
|
Cheng CY, Wibowo-Teale AM. Semiempirical Methods for Molecular Systems in Strong Magnetic Fields. J Chem Theory Comput 2023; 19:6226-6241. [PMID: 37672773 PMCID: PMC10536997 DOI: 10.1021/acs.jctc.3c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 09/08/2023]
Abstract
A general scheme is presented to extend semiempirical methods to include the effects of arbitrary strength magnetic fields, while maintaining computational efficiency. The approach utilizes three main modifications; a London atomic orbital (LAO) basis set is introduced, field-dependent kinetic energy corrections are added to the model Hamiltonian, and spin-Zeeman interaction energy terms are included. The approach is applied to the widely available density-functional tight-binding method GFN1-xTB. Considering the basis set requirements for the kinetic energy corrections in a magnetic field leads to two variants: a single-basis approach GFN1-xTB-M0 and a dual-basis approach GFN1-xTB-M1. The LAO basis in the latter includes the appropriate nodal structure for an accurate representation of the kinetic energy corrections. The variants are assessed by benchmarking magnetizabilities and nuclear magnetic resonance shielding constants calculated using weak magnetic fields. Remarkably, the GFN1-xTB-M1 approach also exhibits excellent performance for strong fields, |B | ≤ 0.2B0 (B0 = 2.3505 × 105 T), recovering exotic features such as the para- to dia-magnetic transition in the BH molecule and the preferred electronic configuration, molecular conformation, and orientation of benzene. At stronger field strengths, |B | > 0.2B0, a degradation in the quality of the results is observed. The utility of GFN1-xTB-M1 is demonstrated by performing conformer searches in a range of field strengths for the cyclooctatetraene molecule, with GFN1-xTB-M1 capturing the transition from tub to planar conformations at high field, consistent with much more computationally demanding current-density functional theory calculations. Magnetically induced currents are also shown to be well described for the benzene and infinitene molecules, the latter demonstrating the flexibility and computational efficiency of the approach. The GFN1-xTB-M1 approach is a useful tool for the study of structure, conformation, and dynamics of large systems in magnetic fields at the semiempirical level as well as for preoptimization of molecular structure in ab initio calculations, enabling more efficient exploration of complex potential energy surfaces and reactivity in the presence of external fields.
Collapse
Affiliation(s)
- Chi Y. Cheng
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Andrew M. Wibowo-Teale
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
7
|
Tellgren EI, Culpitt T, Peters LDM, Helgaker T. Molecular vibrations in the presence of velocity-dependent forces. J Chem Phys 2023; 158:124124. [PMID: 37003779 DOI: 10.1063/5.0139684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
A semiclassical theory of small oscillations is developed for nuclei that are subject to velocity-dependent forces in addition to the usual interatomic forces. When the velocity-dependent forces are due to a strong magnetic field, novel effects arise-for example, the coupling of vibrational, rotational, and translational modes. The theory is first developed using Newtonian mechanics and we provide a simple quantification of the coupling between these types of modes. We also discuss the mathematical structure of the problem, which turns out to be a quadratic eigenvalue problem rather than a standard eigenvalue problem. The theory is then re-derived using the Hamiltonian formalism, which brings additional insight, including a close analogy to the quantum-mechanical treatment of the problem. Finally, we provide numerical examples for the H2, HT, and HCN molecules in a strong magnetic field.
Collapse
Affiliation(s)
- Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Tanner Culpitt
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurens D M Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
8
|
Culpitt T, Peters LDM, Tellgren EI, Helgaker T. Time-dependent nuclear-electronic orbital Hartree-Fock theory in a strong uniform magnetic field. J Chem Phys 2023; 158:114115. [PMID: 36948801 DOI: 10.1063/5.0139675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
In an ultrastrong magnetic field, with field strength B ≈ B0 = 2.35 × 105 T, molecular structure and dynamics differ strongly from that observed on the Earth. Within the Born-Oppenheimer (BO) approximation, for example, frequent (near) crossings of electronic energy surfaces are induced by the field, suggesting that nonadiabatic phenomena and processes may play a more important role in this mixed-field regime than in the weak-field regime on Earth. To understand the chemistry in the mixed regime, it therefore becomes important to explore non-BO methods. In this work, the nuclear-electronic orbital (NEO) method is employed to study protonic vibrational excitation energies in the presence of a strong magnetic field. The NEO generalized Hartree-Fock theory and time-dependent Hartree-Fock (TDHF) theory are derived and implemented, accounting for all terms that result as a consequence of the nonperturbative treatment of molecular systems in a magnetic field. The NEO results for HCN and FHF- with clamped heavy nuclei are compared against the quadratic eigenvalue problem. Each molecule has three semi-classical modes owing to the hydrogen-two precession modes that are degenerate in the absence of a field and one stretching mode. The NEO-TDHF model is found to perform well; in particular, it automatically captures the screening effects of the electrons on the nuclei, which are quantified through the difference in energy of the precession modes.
Collapse
Affiliation(s)
- Tanner Culpitt
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurens D M Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
9
|
Peters LDM, Culpitt T, Tellgren EI, Helgaker T. Berry Population Analysis: Atomic Charges from the Berry Curvature in a Magnetic Field. J Chem Theory Comput 2023; 19:1231-1242. [PMID: 36705605 PMCID: PMC9979605 DOI: 10.1021/acs.jctc.2c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Berry curvature is essential in Born-Oppenheimer molecular dynamics, describing the screening of the nuclei by the electrons in a magnetic field. Parts of the Berry curvature can be understood as the external magnetic field multiplied by an effective charge so that the resulting Berry force behaves like a Lorentz force during the simulations. Here, we investigate whether these effective charges can provide insight into the electronic structure of a given molecule or, in other words, whether we can perform a population analysis based on the Berry curvature. To develop our approach, we first rewrite the Berry curvature in terms of charges that partially capture the effective charges and their dependencies on the nuclear velocities. With these Berry charges and charge fluctuations, we then construct our population analysis yielding atomic charges and overlap populations. Calculations at the Hartree-Fock level reveal that the atomic charges are similar to those obtained from atomic polar tensors. However, since we additionally obtain an estimate for the fluctuations of the charges and a partitioning of the atomic charges into contributions from all atoms, we conclude that the Berry population analysis is a useful alternative tool to analyze the electronic structures of molecules.
Collapse
|
10
|
Tao Z, Qiu T, Subotnik JE. Symmetric Post-Transition State Bifurcation Reactions with Berry Pseudomagnetic Fields. J Phys Chem Lett 2023; 14:770-778. [PMID: 36652556 DOI: 10.1021/acs.jpclett.2c02668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We investigate how the Berry force (i.e., the pseudomagnetic force operating on nuclei as induced by electronic degeneracy and spin-orbit coupling (SOC)) might modify a post-transition state bifurcation (PTSB) reaction path and affect product selectivity for situations when multiple products share the same transition state. To estimate the magnitude of this effect, Langevin dynamics are performed on a model system with a valley-ridge inflection (VRI) point in the presence of a magnetic field (that mimics the Berry curvature). We also develop an analytic model for such selectivity that depends on key parameters such as the surface topology, the magnitude of the Berry force, and the nuclear friction. Within this dynamical model, static electronic structure calculations (at the level of generalized Hartree-Fock with spin-orbit coupling (GHF+SOC) theory) suggest that electronic spin induced Berry force effects may indeed lead to noticeable changes in methoxy radical isomerization.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tian Qiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Peters LDM, Culpitt T, Tellgren EI, Helgaker T. Magnetic-translational sum rule and approximate models of the molecular Berry curvature. J Chem Phys 2022; 157:134108. [PMID: 36208997 DOI: 10.1063/5.0112943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Berry connection and curvature are key components of electronic structure calculations for atoms and molecules in magnetic fields. They ensure the correct translational behavior of the effective nuclear Hamiltonian and the correct center-of-mass motion during molecular dynamics in these environments. In this work, we demonstrate how these properties of the Berry connection and curvature arise from the translational symmetry of the electronic wave function and how they are fully captured by a finite basis set of London orbitals but not by standard Gaussian basis sets. This is illustrated by a series of Hartree-Fock calculations on small molecules in different basis sets. Based on the resulting physical interpretation of the Berry curvature as the shielding of the nuclei by the electrons, we introduce and test a series of approximations using the Mulliken fragmentation scheme of the electron density. These approximations will be particularly useful in ab initio molecular dynamics calculations in a magnetic field since they reduce the computational cost, while recovering the correct physics and up to 95% of the exact Berry curvature.
Collapse
Affiliation(s)
- Laurens D M Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Tanner Culpitt
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
12
|
Bian X, Wu Y, Rawlinson J, Littlejohn RG, Subotnik JE. Modeling Spin-Dependent Nonadiabatic Dynamics with Electronic Degeneracy: A Phase-Space Surface-Hopping Method. J Phys Chem Lett 2022; 13:7398-7404. [PMID: 35926097 DOI: 10.1021/acs.jpclett.2c01802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nuclear Berry curvature effects emerge from electronic spin degeneracy and can lead to nontrivial spin-dependent (nonadiabatic) nuclear dynamics. However, such effects are not captured fully by any current mixed quantum-classical method such as fewest-switches surface hopping. In this work, we present a phase-space surface-hopping (PSSH) approach to simulate singlet-triplet intersystem crossing dynamics. We show that with a simple pseudodiabatic ansatz, a PSSH algorithm can capture the relevant Berry curvature effects and make predictions in agreement with exact quantum dynamics for a simple singlet-triplet model Hamiltonian. Thus, this approach represents an important step toward simulating photochemical and spin processes concomitantly, as relevant to intersystem crossing and spin-lattice relaxation dynamics.
Collapse
Affiliation(s)
- Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan Rawlinson
- Department of Mathematics, University of Manchester, Manchester M13 9PL, U.K
| | - Robert G Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Monzel L, Pausch A, Peters L, Tellgren E, Helgaker T, Klopper W. Molecular Dynamics of Linear Molecules in Strong Magnetic Fields. J Chem Phys 2022; 157:054106. [DOI: 10.1063/5.0097800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular rotations and vibrations have been extensively studied by chemists for decades, both experimentally using spectroscopic methods and theoretically with the help of quantum chemistry. However, the theoretical investigation of molecular rotations and vibrations in strong magnetic fields requires computationally more demanding tools. As such, proper calculations of rotational and vibrational spectra were not feasible up until very recently. In this work, we present rotational and vibrational spectra for two small linear molecules, H2 and LiH, in strong magnetic fields. By treating the nuclei as classical particles, trajectories for rotations and vibrations are simulated from ab initio molecular dynamics. Born-Oppenheimer potential energy surfaces are calculated at the Hartree-Fock and MP2 levels of theory, using London atomic orbitals to ensure gauge origin invariance. For the calculation of nuclear trajectories, a highly efficient Tajima propagator is introduced, incorporating the Berry curvature tensor accounting for the screening of nuclear charges.
Collapse
Affiliation(s)
- Laurenz Monzel
- Karlsruhe Institute of Technology Institute of Physical Chemistry, Germany
| | - Ansgar Pausch
- Karlsruhe Institute of Technology Faculty of Chemistry and Biosciences, Germany
| | | | | | | | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology Faculty of Chemistry and Biosciences, Germany
| |
Collapse
|
14
|
Wu Y, Bian X, Rawlinson JI, Littlejohn RG, Subotnik JE. A phase-space semiclassical approach for modeling nonadiabatic nuclear dynamics with electronic spin. J Chem Phys 2022; 157:011101. [DOI: 10.1063/5.0093345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemical relaxation phenomena, including photochemistry and electron transfer processes, form a vigorous area of research in which nonadiabatic dynamics plays a fundamental role. However, for electronic systems with spin degrees of freedom, there are few if any applicable and practical quasiclassical methods. Here, we show that for nonadiabatic dynamics with two electronic states and a complex-valued Hamiltonian that does not obey time-reversal symmetry (as relevant to many coupled nuclear-electronic-spin systems), the optimal semiclassical approach is to generalize Tully’s surface hopping dynamics from coordinate space to phase space. In order to generate the relevant phase-space adiabatic surfaces, one isolates a proper set of diabats, applies a phase gauge transformation, and then diagonalizes the total Hamiltonian (which is now parameterized by both R and P). The resulting algorithm is simple and valid in both the adiabatic and nonadiabatic limits, incorporating all Berry curvature effects. Most importantly, the resulting algorithm allows for the study of semiclassical nonadiabatic dynamics in the presence of spin–orbit coupling and/or external magnetic fields. One expects many simulations to follow as far as modeling cutting-edge experiments with entangled nuclear, electronic, and spin degrees of freedom, e.g., experiments displaying chiral-induced spin selectivity.
Collapse
Affiliation(s)
- Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan I. Rawlinson
- School of Mathematics, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
| | - Robert G. Littlejohn
- Department of Physics, University of California, 366 Physics North MC 7300, Berkeley, California 94720-7300, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Bian X, Qiu T, Chen J, Subotnik JE. On the meaning of Berry force for unrestricted systems treated with mean-field electronic structure. J Chem Phys 2022; 156:234107. [PMID: 35732536 DOI: 10.1063/5.0093092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the Berry force as computed by an approximate, mean-field electronic structure can be meaningful if properly interpreted. In particular, for a model Hamiltonian representing a molecular system with an even number of electrons interacting via a two-body (Hubbard) interaction and a spin-orbit coupling, we show that a meaningful nonzero Berry force emerges whenever there is spin unrestriction-even though the Hamiltonian is real-valued and formally the on-diagonal single-surface Berry force must be zero. Moreover, if properly applied, this mean-field Berry force yields roughly the correct asymptotic motion for scattering through an avoided crossing. That being said, within the context of a ground-state calculation, several nuances do arise as far interpreting the Berry force correctly, and as a practical matter, the Berry force diverges near the Coulson-Fischer point (which can lead to numerical instabilities). We do not address magnetic fields here.
Collapse
Affiliation(s)
- Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tian Qiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Junhan Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Lemmens L, De Vriendt X, Bultinck P, Acke G. Analyzing the Behavior of Spin Phases in External Magnetic Fields by Means of Spin-Constrained States. J Chem Theory Comput 2022; 18:3364-3376. [PMID: 35611406 DOI: 10.1021/acs.jctc.1c00953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During molecular dissociation in the presence of an external uniform magnetic field, electrons flip their spin antiparallel to the magnetic field because of the stabilizing influence of the spin Zeeman operator. Although generalized Hartree-Fock descriptions furnish the optimal mean-field energetic description of such bond-breaking processes, they are allowed to break Ŝz symmetry, leading to intricate and unexpected spin phases and phase transitions. In this work, we show that the behavior of these molecular spin phases can be interpreted in terms of spin phase diagrams constructed by constraining states to target expectation values of projected spin. The underlying constrained states offer a complete electronic characterization of the spin phases and spin phase transitions, as they can be analyzed using standard quantum chemical tools. Because the constrained states effectively span the entire phase space, they could provide an excellent starting point for post-Hartree-Fock methods aimed at gaining more electron correlation or regaining spin symmetry.
Collapse
Affiliation(s)
- Laurent Lemmens
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| | - Xeno De Vriendt
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| | - Guillaume Acke
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| |
Collapse
|
17
|
Culpitt T, Peters LDM, Tellgren EI, Helgaker T. Analytic calculation of the Berry curvature and diagonal Born–Oppenheimer correction for molecular systems in uniform magnetic fields. J Chem Phys 2022; 156:044121. [DOI: 10.1063/5.0079304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Tanner Culpitt
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurens D. M. Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I. Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
18
|
Blaschke S, Stopkowicz S. Cholesky decomposition of complex two-electron integrals over GIAOs: Efficient MP2 computations for large molecules in strong magnetic fields. J Chem Phys 2022; 156:044115. [DOI: 10.1063/5.0076588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Simon Blaschke
- Department Chemie, Johannes Gutenberg-Unversität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Stella Stopkowicz
- Department Chemie, Johannes Gutenberg-Unversität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
19
|
Edet CO, Ikot AN. Analysis of the impact of external fields on the energy spectra and thermo-magnetic properties of N2,I2,CO,NO and HCl diatomic molecules. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1957170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- C. O. Edet
- Theoretical Physics Group, Department of Physics, University of Port Harcourt, Choba, Nigeria
| | - A. N. Ikot
- Theoretical Physics Group, Department of Physics, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
20
|
Peters LDM, Culpitt T, Monzel L, Tellgren EI, Helgaker T. Ab Initio molecular dynamics with screened Lorentz forces. II. Efficient propagators and rovibrational spectra in strong magnetic fields. J Chem Phys 2021; 155:024105. [PMID: 34266256 DOI: 10.1063/5.0056235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Strong magnetic fields have a large impact on the dynamics of molecules. In addition to the changes in the electronic structure, the nuclei are exposed to the Lorentz force with the magnetic field being screened by the electrons. In this work, we explore these effects using ab initio molecular dynamics simulations based on an effective Hamiltonian calculated at the Hartree-Fock level of theory. To correctly include these non-conservative forces in the dynamics, we have designed a series of novel propagators that show both good efficiency and stability in test cases. As a first application, we analyze simulations of He and H2 at two field strengths characteristic of magnetic white dwarfs (0.1 B0 = 2.35 × 104 T and B0 = 2.35 × 105 T). While the He simulations clearly demonstrate the importance of electron screening of the Lorentz force in the dynamics, the extracted rovibrational spectra of H2 reveal a number of fascinating features not observed in the field-free case: couplings of rotations/vibrations with the cyclotron rotation, overtones with unusual selection rules, and hindered rotations that transmute into librations with increasing field strength. We conclude that our presented framework is a powerful tool to investigate molecules in these extreme environments.
Collapse
Affiliation(s)
- Laurens D M Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Tanner Culpitt
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurenz Monzel
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|