1
|
Bressan G, Penty SE, Green D, Heisler IA, Jones GA, Barendt TA, Meech SR. Ultrafast and Coherent Dynamics in a Solvent Switchable "Pink Box" Perylene Diimide Dimer. Angew Chem Int Ed Engl 2024; 63:e202407242. [PMID: 39092492 DOI: 10.1002/anie.202407242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture. Recently, a macrocyclic PDI dimer was reported in which excitonic coupling could be turned on and off simply by changing the solvent. This presents a useful case where coupling is modified without synthetic changes to tune supramolecular structure. Here we present a detailed study of solvent dependent excited state dynamics in this dimer by means of coherent multidimensional spectroscopy. Spectral analysis resolves the different coupling strengths, which are consistent with solvent dependent changes in dimer conformation. The strongly coupled conformer forms an excimer within 300 fs. The low-frequency Raman active modes recovered from two-dimensional electronic spectra reveal frequencies characteristic of exciton coupling. These are assigned to modes modulating the coupling from the corresponding DFT calculations. Further analysis reveals a time dependent frequency during excimer formation. Analysis of two-dimensional "beatmaps" reveals features in the coupled dimer which are not predicted by the displaced harmonic oscillator model and are assigned to vibronic coupling.
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Samuel E Penty
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 9500, Brazil
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Timothy A Barendt
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
2
|
Kefer O, Kolesnichenko PV, Buckup T. Two-dimensional coherent electronic spectrometer with switchable multi-color configurations. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:023003. [PMID: 38416044 DOI: 10.1063/5.0186915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Broadband implementation of two-dimensional electronic spectroscopy (2DES) is a desirable goal for numerous research groups, yet achieving it presents considerable challenges. An effective strategy to mitigate these challenges is the utilization of two-color approaches, effectively broadening the spectral bandwidth accessible with 2DES. Here, we present a simple approach to include multi-color configurations based on adjustable mirror mounts. This enables seamless toggling between single-color, two-color, and transient 2DES within the same spectroscopic apparatus, which is benchmarked on two common laser dyes, Rhodamine 6G and Nile blue. Upon mixing the dyes, single-color 2DES shows overlapping signals, whereas a high selectivity toward Nile blue responses is maintained in two-color and transient 2DES, owing to the fully resonant excitation that is spectrally shifted relative to the detection window. This method is readily implemented in other setups with similar experimental layouts and can be used as a simple solution to overcome existing bandwidth limitations. With the inclusion of transient 2DES, additional insights into excited-state processes can be gained due to its increased sensitivity toward excited-state coherences.
Collapse
Affiliation(s)
- Oskar Kefer
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Pavel V Kolesnichenko
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
3
|
Bhattacharyya A, Sahu A, Patra S, Tiwari V. Low- and high-frequency vibrations synergistically enhance singlet exciton fission through robust vibronic resonances. Proc Natl Acad Sci U S A 2023; 120:e2310124120. [PMID: 38019862 PMCID: PMC10710028 DOI: 10.1073/pnas.2310124120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Singlet exciton fission (SEF) is initiated by ultrafast internal conversion of a singlet exciton into a correlated triplet pair [Formula: see text]. The "reaction coordinates" for ultrafast SEF even in archetypal systems such as pentacene thin film remain unclear. Couplings between fast electrons and slow nuclei are ubiquitous across a range of phenomena in chemistry. Accordingly, spectroscopic detection of vibrational coherences in the [Formula: see text] photoproduct motivated investigations into a possible role of vibronic coupling, akin to that reported in several photosynthetic proteins. However, acenes are very different from chlorophylls with 10× larger vibrational displacements upon photoexcitation and low-frequency vibrations modulating intermolecular orbital overlaps. Whether (and if so how) these unique features carry any mechanistic significance for SEF remains a poorly understood question. Accordingly, synthetic design of new molecules aiming to mimic this process across the solar spectrum has broadly relied on tuning electronic couplings. We address this gap and identify previously unrecognized synergistic interplay of vibrations, which in striking contrast to photosynthesis, vitally enhances SEF across a broad, nonselective and, therefore, unavoidable range of vibrational frequencies. We argue that attaching mechanistic significance to spectroscopically observed prominent quantum beats is misleading. Instead, we show that vibronic mixing leads to anisotropic quantum beats and propose readily implementable polarization-based two-dimensional electronic spectroscopy experiments which uniquely distinguish vibrations which drive vibronic mixing and promote SEF, against spectator vibrations simply accompanying ultrafast internal conversion. Our findings introduce crucial ingredients in synthetic design of SEF materials and spectroscopy experiments aiming to decipher mechanistic details from quantum beats.
Collapse
Affiliation(s)
- Atandrita Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| | - Amitav Sahu
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| | - Sanjoy Patra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| |
Collapse
|
4
|
Jana S, Do TN, Nowakowski PJ, Khyasudeen MF, Le DV, Lim IJY, Prasad S, Zhang J, Tan HS. Measuring the Ultrafast Correlation Dynamics of a Multilevel System Using the Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy. J Phys Chem B 2023; 127:7309-7322. [PMID: 37579317 DOI: 10.1021/acs.jpcb.3c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In a two-dimensional (2D) optical spectrum of a multilevel system, there are diagonal peaks and off-diagonal cross-peaks that correlate the different levels. The time-dependent properties of these diagonal peaks and cross-peaks contain much information about the dynamics of the multilevel system. The time-dependent diagonal peakshape that depends on the spectral diffusion dynamics of the associated transition and characterized by the frequency-fluctuation correlation function (FFCF) is well studied. However, the time-dependent peakshape of a cross-peak that provides the correlation dynamics between different transitions is much less studied or understood. We derived the third-order nonlinear response functions that describe the cross-peaks in a 2D electronic spectrum of a multilevel system that arise from processes sharing a common ground state and/or from internal conversion and population transfer. We can use the center line slope (CLS) analysis to characterize the cross-peaks in conjunction with the diagonal peaks. This allows us to recover the frequency-fluctuation cross-correlation functions (FXCFs) between two transitions. The FXCF and its subsidiary quantities such as the initial correlation and the initial covariance between different transitions are important for studying the correlation effects between states in complex systems, such as energy-transfer processes. Furthermore, knowledge of how various molecular processes over different timescales affect simultaneously different transitions can also be obtained from the measured FXCF. We validated and tested our derived equations and analysis process by studying, as an example, the 2D electronic spectra of metal-free phthalocyanine in solution. We measured and analyzed the diagonal peaks of the Qx and Qy transitions and the cross-peaks between these two transitions of this multilevel electronic system and obtained the associated FFCFs and FXCFs. In this model system, we measured negative components of FXCF over the tens of picosecond timescale. This suggests that in phthalocyanine, the Qx and Qy transitions coupling with the solvent molecule motion are anticorrelated to each other.
Collapse
Affiliation(s)
- Sanjib Jana
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Thanh Nhut Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Paweł J Nowakowski
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - M Faisal Khyasudeen
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Duc Viet Le
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Ian Jing Yan Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Sachin Prasad
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jianjun Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
5
|
Yoneda Y, Kuramochi H. Rapid-Scan Resonant Two-Dimensional Impulsive Stimulated Raman Spectroscopy of Excited States. J Phys Chem A 2023. [PMID: 37289973 DOI: 10.1021/acs.jpca.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemical reactions occur in the electronically excited state, which is effectively represented by a multidimensional potential energy surface (PES) with a vast degree of freedom of nuclear coordinates. The elucidation of the intricate shape of the PES constitutes an important topic in the field of photochemistry and has long been studied both experimentally and theoretically. Recently, fully time-domain resonant two-dimensional Raman spectroscopy has emerged as a potentially powerful tool to provide unique information about the coupling between vibrational manifolds in the excited state. However, the wide application of this technique has been significantly hampered by the technical difficulties associated with experimental implementation and remains challenging. Herein, we demonstrate time-domain resonant two-dimensional impulsive stimulated Raman spectroscopy (2D-ISRS) of excited states using sub-10 fs pulses based on the rapid scan of the time delay, which facilitates the efficient collection of time-domain vibrational signals with high sensitivity. As a proof-of-principle experiment, we performed 2D-ISRS of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) in solution. Through 2D Fourier transformation of the high-quality time-time oscillatory signal, we obtained a 2D frequency-frequency correlation map of excited-state TIPS-pentacene in the broad frequency window of 0-2000 cm-1. The data clearly resolve a number of cross peaks that signify the correlations among excited-state vibrational manifolds. The high capability of the rapid-scan-based 2D-ISRS spectrometer presented in this study enables the systematic investigation of various photochemical reaction systems, thereby further promoting the understanding and applications of this new multidimensional spectroscopy.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
6
|
Nguyen HL, Do TN, Durmusoglu EG, Izmir M, Sarkar R, Pal S, Prezhdo OV, Demir HV, Tan HS. Measuring the Ultrafast Spectral Diffusion and Vibronic Coupling Dynamics in CdSe Colloidal Quantum Wells using Two-Dimensional Electronic Spectroscopy. ACS NANO 2023; 17:2411-2420. [PMID: 36706108 DOI: 10.1021/acsnano.2c09606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We measure the ultrafast spectral diffusion, vibronic dynamics, and energy relaxation of a CdSe colloidal quantum wells (CQWs) system at room temperature using two-dimensional electronic spectroscopy (2DES). The energy relaxation of light-hole (LH) excitons and hot carriers to heavy-hole (HH) excitons is resolved with a time scale of ∼210 fs. We observe the equilibration dynamics between the spectroscopically accessible HH excitonic state and a dark state with a time scale of ∼160 fs. We use the center line slope analysis to quantify the spectral diffusion dynamics in HH excitons, which contains an apparent sub-200 fs decay together with oscillatory features resolved at 4 and 25 meV. These observations can be explained by the coupling to various lattice phonon modes. We further perform quantum calculations that can replicate and explain the observed dynamics. The 4 meV mode is observed to be in the near-critically damped regime and may be mediating the transition between the bright and dark HH excitons. These findings show that 2DES can provide a comprehensive and detailed characterization of the ultrafast spectral properties in CQWs and similar nanomaterials.
Collapse
Affiliation(s)
- Hoang Long Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Thanh Nhut Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Emek G Durmusoglu
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Merve Izmir
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Ritabrata Sarkar
- Department of Chemistry, University of Gour Banga, Malda732103, India
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany
| | - Sougata Pal
- Department of Chemistry, University of Gour Banga, Malda732103, India
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California90089, United States
| | - Hilmi Volkan Demir
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM─Institute of Materials Science and Nanotechnology, Bilkent University, Ankara06800, Turkey
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| |
Collapse
|
7
|
Leng X, Yan Y, Zhu R, Zou J, Zhang W, Shi Q. Revealing Intermolecular Electronic and Vibronic Coherence with Polarization-Dependent Two-Dimensional Beating Maps. J Phys Chem Lett 2023; 14:838-845. [PMID: 36656105 DOI: 10.1021/acs.jpclett.2c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) has been widely employed as an efficient tool to reveal the impact of intermolecular electronic and/or vibronic quantum coherence on excitation energy transfer in light-harvesting complexes. However, intramolecular vibrational coherence would also contribute to oscillating signals in 2D spectra, along with the intermolecular coherence signals that are directly related to energy transfer. In this work, the possibility of screening the vibrational coherence signals is explored through polarization-dependent 2DES. The all-parallel (AP) and double-crossed (DC) polarization-dependent two-dimensional rephasing spectra (2DRS) are simulated for a minimalist heterodimer model with vibrational coupling. By combining the DC-2DRS and the 2D beating maps, we demonstrate that the population and vibrational coherence signals can be largely suppressed, resulting in highlighted intermolecular electronic and vibronic coherence signals. Moreover, the AP- and DC-2DBMs show rather different patterns at the vibrational frequency, indicating a possible way to identify pure vibrational coherence.
Collapse
Affiliation(s)
- Xuan Leng
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Sahu A, Bhat VN, Patra S, Tiwari V. High-sensitivity fluorescence-detected multidimensional electronic spectroscopy through continuous pump-probe delay scan. J Chem Phys 2023; 158:024201. [PMID: 36641398 DOI: 10.1063/5.0130887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fluorescence-detected multidimensional electronic spectroscopy (fMES) promises high sensitivity compared to conventional approaches and is an emerging spectroscopic approach toward combining the advantages of MES with the spatial resolution of a microscope. Here, we present a visible white light continuum-based fMES spectrometer and systematically explore the sensitivity enhancement expected from fluorescence detection. As a demonstration of sensitivity, we report room temperature two-dimensional coherence maps of vibrational quantum coherences in a laser dye at optical densities of ∼2-3 orders of magnitude lower than conventional approaches. This high sensitivity is enabled by a combination of biased sampling along the optical coherence time axes and a rapid scan of the pump-probe waiting time T at each sample. A combination of this approach with acousto-optic phase modulation and phase-sensitive lock-in detection enables measurements of room temperature vibrational wavepackets even at the lowest ODs. Alternative faster data collection schemes, which are enabled by the flexibility of choosing a non-uniform undersampled grid in the continuous T scanning approach, are also demonstrated.
Collapse
Affiliation(s)
- Amitav Sahu
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Vivek N Bhat
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sanjoy Patra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|