1
|
Ramazanov RR, Nasibullin RT, Sundholm D, Kurtén T, Valiev RR. Nonradiative Deactivation of the Fluorescent Ag 16-DNA and Ag 10-DNA Emitters: The Role of Water. J Phys Chem Lett 2024; 15:10710-10717. [PMID: 39418079 PMCID: PMC11514010 DOI: 10.1021/acs.jpclett.4c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The luminescent quantum yield of silver-cluster emitters stabilized by short oligonucleotides (AgN-DNA) may be efficiently tuned by replacing nucleobases in their stabilization DNA matrices with analogues. In the present study, we proposed a valuable and straightforward theoretical methodology for assessing the photophysical behaviors emerging in AgN-DNA emitters after excitation. Using green Ag10-DNA and near-IR Ag16-DNA emitters we demonstrate how point guanine/inosine replacement could affect the photophysical rate constants of radiative/nonradiative processes. The main deactivation channel of the fluorescence of Ag16-DNA is intersystem crossing, which is in line with experimental data, whereas for Ag10-DNA the calculations overestimate the intersystem crossing rate possibly due to pure solvent contributions.
Collapse
Affiliation(s)
- Ruslan R. Ramazanov
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| | - Rinat T. Nasibullin
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| | - Dage Sundholm
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| | - Rashid R. Valiev
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| |
Collapse
|
2
|
Setzler CJ, Petty JT. Click catalysis and DNA conjugation using a nanoscale DNA/silver cluster pair. NANOSCALE 2024; 16:17868-17876. [PMID: 39257181 DOI: 10.1039/d4nr02938k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
DNA-bound silver clusters are most readily recognized by their strong fluorescence that spans the visible and near-infrared regions. From this suite of chromophores, we chose a green-emitting Ag106+ bound to C4AC4TC3GT4 and describe how this DNA/cluster pair is also a catalyst. A DNA-tethered alkyne conjugates with an azide via cycloaddition, an inherently slow reaction that is facilitated through the joint efforts of the cluster and DNA. The Ag106+ structure is the catalytic core in this complex, and it has three distinguishing characteristics. It facilitates cycloaddition while preserving its stoichiometry, charge, and spectra. It also acidifies its nearby alkyne to promote H/D exchange, suggesting a silver-alkyne complex. Finally, it is markedly more efficient when compared with related multinuclear DNA-silver complexes. The Ag106+ is trapped within its C4AC4TC3GT4 host, which governs the catalytic activity in two ways. The DNA has orthogonal functional groups for both the alkyne and cluster, and these can be systematically separated to quench the click reaction. It is also a polydentate ligand that imprints an elongated shape on its cluster adduct. This extended structure suggests that DNA may pry apart the cluster to open coordination sites for the alkyne and azide reactants. These studies indicate that this DNA/silver cluster pair work together with catalysis directly driven by the silver cluster and indirectly guided by the DNA host.
Collapse
Affiliation(s)
- Caleb J Setzler
- Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
| |
Collapse
|
3
|
Sadeghi E, Mastracco P, Gonzàlez-Rosell A, Copp SM, Bogdanov P. Multi-Objective Design of DNA-Stabilized Nanoclusters Using Variational Autoencoders With Automatic Feature Extraction. ACS NANO 2024; 18:26997-27008. [PMID: 39288200 PMCID: PMC11447918 DOI: 10.1021/acsnano.4c09640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
DNA-stabilized silver nanoclusters (AgN-DNAs) have sequence-tuned compositions and fluorescence colors. High-throughput experiments together with supervised machine learning models have recently enabled design of DNA templates that select for AgN-DNA properties, including near-infrared (NIR) emission that holds promise for deep tissue bioimaging. However, these existing models do not enable simultaneous selection of multiple AgN-DNA properties, and require significant expert input for feature engineering and class definitions. This work presents a model for multiobjective, continuous-property design of AgN-DNAs with automatic feature extraction, based on variational autoencoders (VAEs). This model is generative, i.e., it learns both the forward mapping from DNA sequence to AgN-DNA properties and the inverse mapping from properties to sequence, and is trained on an experimental data set of DNA sequences paired with AgN-DNA fluorescence properties. Experimental testing shows that the model enables effective design of AgN-DNA emission, including bright NIR AgN-DNAs with 4-fold greater abundance compared to training data. In addition, Shapley analysis is employed to discern learned nucleobase patterns that correspond to fluorescence color and brightness. This generative model can be adapted for a range of biomolecular systems with sequence-dependent properties, enabling precise design of emerging biomolecular nanomaterials.
Collapse
Affiliation(s)
- Elham Sadeghi
- Department
of Computer Science, University at Albany-SUNY, Albany, New York 12222, United States
| | - Peter Mastracco
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
| | - Petko Bogdanov
- Department
of Computer Science, University at Albany-SUNY, Albany, New York 12222, United States
| |
Collapse
|
4
|
Gonzàlez-Rosell A, Copp SM. An Atom-Precise Understanding of DNA-Stabilized Silver Nanoclusters. Acc Chem Res 2024; 57:2117-2129. [PMID: 38995323 PMCID: PMC11308368 DOI: 10.1021/acs.accounts.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
ConspectusDNA-stabilized silver nanoclusters (AgN-DNAs) are sequence-encoded fluorophores. Like other noble metal nanoclusters, the optical properties of AgN-DNAs are dictated by their atomically precise sizes and shapes. What makes AgN-DNAs unique is that nanocluster size and shape are controlled by nucleobase sequence of the templating DNA oligomer. By choice of DNA sequence, it is possible to synthesize a wide range of AgN-DNAs with diverse emission colors and other intriguing photophysical properties. AgN-DNAs hold significant potential as "programmable" emitters for biological imaging due to their combination of small molecular-like sizes, bright and sequence-tuned fluorescence, low toxicities, and cost-effective synthesis. In particular, the potential to extend AgN-DNAs into the second near-infrared region (NIR-II) is promising for deep tissue imaging, which is a major area of interest for advancing biomedical imaging. Achieving this goal requires a deep understanding of the structure-property relationships that govern AgN-DNAs in order to design AgN-DNA emitters with sizes and geometries that support NIR-II emission.In recent years, major advances have been made in understanding the structure and composition of AgN-DNAs, enabling new insights into the correlation of nanocluster structure and photophysical properties. These advances have hinged on combined innovations in mass characterization and crystallography of compositionally pure AgN-DNAs, together with combinatorial experiments and machine learning-guided design. A combined approach is essential due to the major challenge of growing suitable AgN-DNA crystals for diffraction and to the labor-intensive nature of preparing and solving the molecular formulas of atomically precise AgN-DNAs by mass spectrometry. These approaches alone are not feasibly scaled to explore the large sequence space of DNA oligomer templates for AgN-DNAs.This account describes recent fundamental advances in AgN-DNA science that have been enabled by high throughput synthesis and fluorimetry together with detailed analytical studies of purified AgN-DNAs. First, short introductions to nanocluster chemistry and AgN-DNA basics are presented. Then, we review recent large-scale studies that have screened thousands of DNA templates for AgN-DNAs, leading to discovery of distinct classes of these emitters with unique cluster core compositions and ligand chemistries. In particular, the discovery of a new class of chloride-stabilized AgN-DNAs enabled the first ab initio calculations of AgN-DNA electronic structure and present new approaches to stabilize these emitters in biologically relevant conditions. Near-infrared (NIR) emissive AgN-DNAs are also found to exhibit diverse structures and properties. Finally, we conclude by highlighting recent proof-of-principle demonstrations of NIR AgN-DNAs for targeted fluorescence imaging. Continued efforts may future push AgN-DNAs into the tissue transparency window for fluorescence imaging in the NIR-II tissue transparency window.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
5
|
Liisberg MB, Vosch T. Fluorescence Screening of DNA-AgNCs with Pulsed White Light Excitation. NANO LETTERS 2024; 24:7987-7991. [PMID: 38905483 PMCID: PMC11229690 DOI: 10.1021/acs.nanolett.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
DNA-stabilized silver nanoclusters (DNA-AgNCs) are a class of fluorophores with interesting photophysical properties dominated by the choice of DNA sequence. Screening methods with ultraviolet excitation and steady state well plate readers have previously been used for deepening the understanding between DNA sequence and emission color of the resulting DNA-AgNCs. Here, we present a new method for screening DNA-AgNCs by using pulsed white light excitation (λex ≈ 490-900 nm). By subtraction and time gating we are able to circumvent the dominating scatter of the white excitation light and extract both temporally and spectrally resolved emission of DNA-AgNCs over the visible to near-infrared range. Additionally, we are able to identify weak long-lived emission, which is often buried underneath the intense nanosecond fluorescence. This new approach will be useful for future screening of DNA-AgNCs (or other novel emissive materials) and aid machine-learning models by providing a richer training data set.
Collapse
Affiliation(s)
- Mikkel Baldtzer Liisberg
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Setzler C, Arrington CA, Lewis D, Petty JT. Breaching the Fortress: Photochemistry of DNA-Caged Ag 106. J Phys Chem B 2023; 127:10851-10860. [PMID: 38054435 PMCID: PMC10749453 DOI: 10.1021/acs.jpcb.3c06358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
A DNA strand can encapsulate a silver molecule to create a nanoscale, aqueous stable chromophore. A protected cluster that strongly fluoresces can also be weakly photolabile, and we describe the laser-driven photochemistry of the green fluorophore C4AC4TC3GT4/Ag106+. The embedded cluster is selectively photoexcited at 490 nm and then bleached, and we describe how the efficiency, products, and route of this photochemical reaction are controlled by the DNA cage. With irradiation at 496.5 nm, the cluster absorption progressively drops to give a photodestruction quantum yield of 1.5 (±0.2) × 10-4, ∼103× less efficient than fluorescence. A new λabs = 335 nm chromophore develops because the precursor with 4 Ag0 is converted into a group of clusters with 2 Ag0 - Ag64+, Ag75+, Ag86+, and Ag97+. The 4-7 Ag+ in this series are chemically distinct from the 2 Ag0 because they are selectively etched by iodide. This halide precipitates silver to favor only the smallest Ag64+ cluster, but the larger clusters re-develop when the precipitated Ag+ ions are replenished. DNA-bound Ag106+ decomposes because it is electronically excited and then reacts with oxygen. This two-step process may be state-specific because O2 quenches the red luminescence from Ag106+. However, the rate constant of 2.3 (±0.2) × 106 M-1 s-1 is relatively small, which suggests that the surrounding DNA matrix hinders O2 diffusion. On the basis of analogous photoproducts with methylene blue, we propose that a reactive oxygen species is produced and then oxidizes Ag106+ to leave behind a loose Ag+-DNA skeleton. These findings underscore the ability of DNA scaffolds to not only tune the spectra but also guide the reactions of their molecular silver adducts.
Collapse
Affiliation(s)
- Caleb
J. Setzler
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb A. Arrington
- Department
of Chemistry, Wofford College, Spartanburg, South Carolina 29303, United States
| | - David Lewis
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Jeffrey T. Petty
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| |
Collapse
|
7
|
Guha R, Gonzàlez-Rosell A, Rafik M, Arevalos N, Katz BB, Copp SM. Electron count and ligand composition influence the optical and chiroptical signatures of far-red and NIR-emissive DNA-stabilized silver nanoclusters. Chem Sci 2023; 14:11340-11350. [PMID: 37886084 PMCID: PMC10599602 DOI: 10.1039/d3sc02931j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/09/2023] [Indexed: 10/28/2023] Open
Abstract
Near-infrared (NIR) emissive DNA-stabilized silver nanoclusters (AgN-DNAs) are promising fluorophores in the biological tissue transparency windows. Hundreds of NIR-emissive AgN-DNAs have recently been discovered, but their structure-property relationships remain poorly understood. Here, we investigate 19 different far-red and NIR emissive AgN-DNA species stabilized by 10-base DNA templates, including well-studied emitters whose compositions and chiroptical properties have never been reported before. The molecular formula of each purified species is determined by high-resolution mass spectrometry and correlated to its optical absorbance, emission, and circular dichroism (CD) spectra. We find that there are four distinct compositions for AgN-DNAs emissive at the far red/NIR spectral border. These emitters are either 8-electron clusters stabilized by two DNA oligomer copies or 6-electron clusters with one of three different ligand compositions: two oligomer copies, three oligomer copies, or two oligomer copies with additional chlorido ligands. Distinct optical and chiroptical signatures of 6-electron AgN-DNAs correlate with each ligand composition. AgN-DNAs with three oligomer ligands exhibit shorter Stokes shifts than AgN-DNAs with two oligomers, and AgN-DNAs with chlorido ligands have increased Stokes shifts and significantly suppressed visible CD transitions. Nanocluster electron count also significantly influences electronic structure and optical properties, with 6-electron and 8-electron AgN-DNAs exhibiting distinct absorbance and CD spectral features. This study shows that the optical and chiroptical properties of NIR-emissive AgN-DNAs are highly sensitive to nanocluster composition and illustrates the diversity of structure-property relationships for NIR-emissive AgN-DNAs, which could be harnessed to precisely tune these emitters for bioimaging applications.
Collapse
Affiliation(s)
- Rweetuparna Guha
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Malak Rafik
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Nery Arevalos
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Benjamin B Katz
- Department of Chemistry, University of California Irvine CA 92697 USA
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
- Department of Physics and Astronomy, University of California Irvine CA 92697 USA
- Department of Chemical and Biomolecular Engineering, University of California Irvine CA 92697 USA
| |
Collapse
|
8
|
Liisberg MB, Rück V, Vosch T. Time gated Fourier transform spectroscopy with burst excitation for time-resolved spectral maps from the nano- to millisecond range. Chem Commun (Camb) 2023; 59:12625-12628. [PMID: 37791644 DOI: 10.1039/d3cc03961g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We demonstrate burst-mode Time Gated Fourier Transform Spectroscopy (bmTG-FTS), a technique for simultaneously capturing and disentangling emission signals from short- (ns) and long-lived (μs-ms) states. We showcase the possibilities of the technique by preparing time gated temporal-spectral maps from a dual-emissive DNA-stabilized silver nanocluster (DNA-AgNC).
Collapse
Affiliation(s)
- Mikkel B Liisberg
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Vanessa Rück
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| |
Collapse
|
9
|
Rück V, Liisberg MB, Mollerup CB, He Y, Chen J, Cerretani C, Vosch T. A DNA-Stabilized Ag 18 12+ Cluster with Excitation-Intensity-Dependent Dual Emission. Angew Chem Int Ed Engl 2023; 62:e202309760. [PMID: 37578902 DOI: 10.1002/anie.202309760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
DNA-stabilized silver nanoclusters (DNA-AgNCs) are easily tunable emitters with intriguing photophysical properties. Here, a DNA-AgNC with dual emission in the red and near-infrared (NIR) regions is presented. Mass spectrometry data showed that two DNA strands stabilize 18 silver atoms with a nanocluster charge of 12+. Besides determining the composition and charge of DNA2 [Ag18 ]12+ , steady-state and time-resolved methods were applied to characterize the picosecond red fluorescence and the relatively intense microsecond-lived NIR luminescence. During this process, the luminescence-to-fluorescence ratio was found to be excitation-intensity-dependent. This peculiar feature is very rare for molecular emitters and allows the use of DNA2 [Ag18 ]12+ as a nanoscale excitation intensity probe. For this purpose, calibration curves were constructed using three different approaches based either on steady-state or time-resolved emission measurements. The results showed that processes like thermally activated delayed fluorescence (TADF) or photon upconversion through triplet-triplet annihilation (TTA) could be excluded for DNA2 [Ag18 ]12+ . We, therefore, speculate that the ratiometric excitation intensity response could be the result of optically activated delayed fluorescence.
Collapse
Affiliation(s)
- Vanessa Rück
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Mikkel B Liisberg
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Christian Brinch Mollerup
- Department of Forensic Medicine, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen, Denmark
| | - Yanmei He
- Division of Chemical Physics and NanoLund, Lund University P.O. Box 124, 22100, Lund, Sweden
| | - Junsheng Chen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Cecilia Cerretani
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Tom Vosch
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| |
Collapse
|
10
|
Krieger KL, Mann EK, Lee KJ, Bolterstein E, Jebakumar D, Ittmann MM, Dal Zotto VL, Shaban M, Sreekumar A, Gassman NR. Spatial mapping of the DNA adducts in cancer. DNA Repair (Amst) 2023; 128:103529. [PMID: 37390674 PMCID: PMC10330576 DOI: 10.1016/j.dnarep.2023.103529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
DNA adducts and strand breaks are induced by various exogenous and endogenous agents. Accumulation of DNA damage is implicated in many disease processes, including cancer, aging, and neurodegeneration. The continuous acquisition of DNA damage from exogenous and endogenous stressors coupled with defects in DNA repair pathways contribute to the accumulation of DNA damage within the genome and genomic instability. While mutational burden offers some insight into the level of DNA damage a cell may have experienced and subsequently repaired, it does not quantify DNA adducts and strand breaks. Mutational burden also infers the identity of the DNA damage. With advances in DNA adduct detection and quantification methods, there is an opportunity to identify DNA adducts driving mutagenesis and correlate with a known exposome. However, most DNA adduct detection methods require isolation or separation of the DNA and its adducts from the context of the nuclei. Mass spectrometry, comet assays, and other techniques precisely quantify lesion types but lose the nuclear context and even tissue context of the DNA damage. The growth in spatial analysis technologies offers a novel opportunity to leverage DNA damage detection with nuclear and tissue context. However, we lack a wealth of techniques capable of detecting DNA damage in situ. Here, we review the limited existing in situ DNA damage detection methods and examine their potential to offer spatial analysis of DNA adducts in tumors or other tissues. We also offer a perspective on the need for spatial analysis of DNA damage in situ and highlight Repair Assisted Damage Detection (RADD) as an in situ DNA adduct technique with the potential to integrate with spatial analysis and the challenges to be addressed.
Collapse
Affiliation(s)
- Kimiko L Krieger
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Elise K Mann
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kevin J Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Elyse Bolterstein
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Deborah Jebakumar
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, Temple, TX 76508, USA; Texas A&M College of Medicine, Temple, TX 76508, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Human Tissue Acquisition & Pathology Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valeria L Dal Zotto
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Mohamed Shaban
- Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Lewis D, Setzler C, Goodwin PM, Thomas K, Branham M, Arrington CA, Petty JT. Interrupted DNA and Slow Silver Cluster Luminescence. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:10574-10584. [PMID: 37313118 PMCID: PMC10258842 DOI: 10.1021/acs.jpcc.3c01050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/15/2023]
Abstract
A DNA-silver cluster conjugate is a hierarchical chromophore with a partly reduced silver core embedded within the DNA nucleobases that are covalently linked by the phosphodiester backbone. Specific sites within a polymeric DNA can be targeted to spectrally tune the silver cluster. Here, the repeated (C2A)6 strand is interrupted with a thymine, and the resulting (C2A)2-T-(C2A)4 forms only Ag106+, a chromophore with both prompt (∼1 ns) green and sustained (∼102 μs) red luminescence. Thymine is an inert placeholder that can be removed, and the two fragments (C2A)2 and (C2A)4 also produce the same Ag106+ adduct. In relation to (C2A)2T(C2A)4, the (C2A)2 + (C2A)4 pair is distinguished because the red Ag106+ luminescence is ∼6× lower, relaxes ∼30% faster, and is quenched ∼2× faster with O2. These differences suggest that a specific break in the phosphodiester backbone can regulate how a contiguous vs broken scaffold wraps and better protects its cluster adduct.
Collapse
Affiliation(s)
- David Lewis
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb Setzler
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Peter M. Goodwin
- Center
for Integrated Nanotechnologies, Mail Stop K771, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kirsten Thomas
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Makayla Branham
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb A. Arrington
- Department
of Chemistry, Wofford College, Spartanburg, South Carolina 29303, United States
| | - Jeffrey T. Petty
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| |
Collapse
|
12
|
Gonzàlez-Rosell A, Malola S, Guha R, Arevalos NR, Matus MF, Goulet ME, Haapaniemi E, Katz BB, Vosch T, Kondo J, Häkkinen H, Copp SM. Chloride Ligands on DNA-Stabilized Silver Nanoclusters. J Am Chem Soc 2023; 145:10721-10729. [PMID: 37155337 DOI: 10.1021/jacs.3c01366] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNA-stabilized silver nanoclusters (AgN-DNAs) are known to have one or two DNA oligomer ligands per nanocluster. Here, we present the first evidence that AgN-DNA species can possess additional chloride ligands that lead to increased stability in biologically relevant concentrations of chloride. Mass spectrometry of five chromatographically isolated near-infrared (NIR)-emissive AgN-DNA species with previously reported X-ray crystal structures determines their molecular formulas to be (DNA)2[Ag16Cl2]8+. Chloride ligands can be exchanged for bromides, which red-shift the optical spectra of these emitters. Density functional theory (DFT) calculations of the 6-electron nanocluster show that the two newly identified chloride ligands were previously assigned as low-occupancy silvers by X-ray crystallography. DFT also confirms the stability of chloride in the crystallographic structure, yields qualitative agreement between computed and measured UV-vis absorption spectra, and provides interpretation of the 35Cl-nuclear magnetic resonance spectrum of (DNA)2[Ag16Cl2]8+. A reanalysis of the X-ray crystal structure confirms that the two previously assigned low-occupancy silvers are, in fact, chlorides, yielding (DNA)2[Ag16Cl2]8+. Using the unusual stability of (DNA)2[Ag16Cl2]8+ in biologically relevant saline solutions as a possible indicator of other chloride-containing AgN-DNAs, we identified an additional AgN-DNA with a chloride ligand by high-throughput screening. Inclusion of chlorides on AgN-DNAs presents a promising new route to expand the diversity of AgN-DNA structure-property relationships and to imbue these emitters with favorable stability for biophotonics applications.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Sami Malola
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Rweetuparna Guha
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Nery R Arevalos
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - María Francisca Matus
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Meghen E Goulet
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Esa Haapaniemi
- Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hannu Häkkinen
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
13
|
Chen J, Kumar A, Cerretani C, Vosch T, Zigmantas D, Thyrhaug E. Excited-State Dynamics in a DNA-Stabilized Ag 16 Cluster with Near-Infrared Emission. J Phys Chem Lett 2023; 14:4078-4083. [PMID: 37120843 PMCID: PMC10166082 DOI: 10.1021/acs.jpclett.3c00764] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Due to desirable optical properties, such as efficient luminescence and large Stokes shift, DNA-templated silver nanoclusters (DNA-AgNCs) have received significant attention over the past decade. Nevertheless, the excited-state dynamics of these systems are poorly understood, as studies of the processes ultimately leading to a fluorescent state are scarce. Here we investigate the early time relaxation dynamics of a 16-atom silver cluster (DNA-Ag16NC) featuring NIR emission in combination with an unusually large Stokes shift of over 5000 cm-1. We follow the photoinduced dynamics of DNA-Ag16NC on time ranges from tens of femtoseconds to nanoseconds using a combination of ultrafast optical spectroscopies, and extract a kinetic model to clarify the physical picture of the photoinduced dynamics. We expect the obtained model to contribute to guiding research efforts toward elucidating the electronic structure and dynamics of these novel objects and their potential applications in fluorescence-based labeling, imaging, and sensing.
Collapse
Affiliation(s)
- Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Ajeet Kumar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, D-85747 Garching, Germany
| | - Cecilia Cerretani
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Tom Vosch
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Donatas Zigmantas
- Division of Chemical Physics, Lund University, Naturvetarvägen 16, 22362 Lund, Sweden
| | - Erling Thyrhaug
- Department of Chemistry and Catalysis Research Center (CRC), School of Natural Sciences, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
14
|
Gonzàlez-Rosell A, Guha R, Cerretani C, Rück V, Liisberg MB, Katz BB, Vosch T, Copp SM. DNA Stabilizes Eight-Electron Superatom Silver Nanoclusters with Broadband Downconversion and Microsecond-Lived Luminescence. J Phys Chem Lett 2022; 13:8305-8311. [PMID: 36037464 PMCID: PMC9465679 DOI: 10.1021/acs.jpclett.2c02207] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/26/2022] [Indexed: 05/25/2023]
Abstract
DNA oligomers are known to serve as stabilizing ligands for silver nanoclusters (AgN-DNAs) with rod-like nanocluster geometries and nanosecond-lived fluorescence. Here, we report two AgN-DNAs that possess distinctly different structural properties and are the first to exhibit only microsecond-lived luminescence. These emitters are characterized by significant broadband downconversion from the ultraviolet/visible to the near-infrared region. Circular dichroism spectroscopy shows that the structures of these two AgN-DNAs differ significantly from previously reported AgN-DNAs. We find that these nanoclusters contain eight valence electrons, making them the first reported DNA-stabilized luminescent quasi-spherical superatoms. This work demonstrates the important role that nanocluster composition and geometry play in dictating luminescence properties of AgN-DNAs and significantly expands the space of structure-property relations that can be achieved for AgN-DNAs.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Rweetuparna Guha
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Cecilia Cerretani
- Nanoscience
Center and Department of Chemistry, University
of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Vanessa Rück
- Nanoscience
Center and Department of Chemistry, University
of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Mikkel B. Liisberg
- Nanoscience
Center and Department of Chemistry, University
of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Benjamin B. Katz
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Tom Vosch
- Nanoscience
Center and Department of Chemistry, University
of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
15
|
Ramasanoff RR, Sokolov PA. Intersystem Crossing Rates of Violet-, Green- and Red-emitting DNA Stabilized Silver Luminescent Clusters. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Petty JT, Lewis D, Carnahan S, Kim D, Couch C. Tug-of-War between DNA Chelation and Silver Agglomeration in DNA-Silver Cluster Chromophores. J Phys Chem B 2022; 126:3822-3830. [PMID: 35594191 DOI: 10.1021/acs.jpcb.2c01054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supramolecular chromophores form when a DNA traps silvers that then coalesce into clusters with discrete, molecular electronic states. However, DNA strands are polymeric ligands that disperse silvers and thus curb agglomeration. We study this competition using two chromophores that share three common components: a dimeric DNA scaffold, Ag+-nucleobase base pairs, and Ag0 chromophores. The DNA host C4-A2-iC4T mimics structural elements in a DNA-cluster crystal structure using a phosphodiester backbone with combined 5' → 3' and 3' → 5' (indicated by "i") directions. The backbone directions must alternate to form the two silver clusters, and this interdependence supports a silver-linked structure. This template creates two chromophores with distinct sizes, charges, and hence spectra: (C4-A2-iC4T)2/Ag117+ with λabs/λem = 430/520 nm and (C4-A2-iC4T)2/Ag148+ with λabs/λem = 510/630 nm. The Ag+ and Ag0 constituents in these partially oxidized clusters are linked with structural elements in C4-A2-iC4T. Ag+ alone binds sparsely but strongly to form C4-A2-iC4T/3-4 Ag+ and (C4-A2-iC4T)2/7-8 Ag+ complexes, and these stoichiometries suggest that Ag+ cross-links pairs of cytosines to form a hairpin with a metallo-C4/iC4 duplex and an adenine loop. The Ag0 are chemically orthogonal because they can be oxidatively etched without disrupting the underlying Ag+-DNA matrix, and their reactivity is attributed to their valence electrons and weaker chelation by the adenines. These studies suggest that Ag+ disperses with the cytosines to create an adenine binding pocket for the Ag0 cluster chromophores.
Collapse
Affiliation(s)
- Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - David Lewis
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Savannah Carnahan
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Caroline Couch
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
17
|
Liisberg MB, Krause S, Cerretani C, Vosch T. Probing emission of a DNA-stabilized silver nanocluster from the sub-nanosecond to millisecond timescale in a single measurement. Chem Sci 2022; 13:5582-5587. [PMID: 35694333 PMCID: PMC9116328 DOI: 10.1039/d2sc01137a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
A method for measuring emission over a range of sub-nanosecond to millisecond timescales is presented and demonstrated for a DNA-stabilized silver nanocluster (DNA-AgNC) displaying dual emission. This approach allows one to disentangle the temporal evolution of the two spectrally overlapping signals and to determine both the nano- and microsecond decay times of the two emission components, together with the time they take to reach the steady-state equilibrium. Addition of a second near-infrared laser, synchronized with a fixed delay, enables simultaneous characterization of optically activated delayed fluorescence (OADF). For this particular DNA-AgNC, we demonstrate that the microsecond decay times of the luminescent state and the OADF-responsible state are similar, indicating that the OADF process starts from the luminescent state.
Collapse
Affiliation(s)
- Mikkel Baldtzer Liisberg
- Nanoscience Center, Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Stefan Krause
- Nanoscience Center, Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Cecilia Cerretani
- Nanoscience Center, Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Tom Vosch
- Nanoscience Center, Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
18
|
Aikens CM, Jin R, Roy X, Tsukuda T. From atom-precise nanoclusters to superatom materials. J Chem Phys 2022; 156:170401. [PMID: 35525653 DOI: 10.1063/5.0095770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Cerretani C, Palm-Henriksen G, Liisberg MB, Vosch T. The effect of deuterium on the photophysical properties of DNA-stabilized silver nanoclusters. Chem Sci 2021; 12:16100-16105. [PMID: 35024132 PMCID: PMC8672707 DOI: 10.1039/d1sc05079f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of using D2O versus H2O as solvent on the spectroscopic properties of two NIR emissive DNA-stabilized silver nanoclusters (DNA–AgNCs). The two DNA–AgNCs were chosen because they emit in the same energy range as the third overtone of the O–H stretch. Opposite effects on the ns-lived decay were observed for the two DNA–AgNCs. Surprisingly, for one DNA–AgNC, D2O shortened the ns decay time and enhanced the amount of µs-lived emission. We hypothesize that the observed effects originate from the differences in the hydrogen bonding strength and vibrational frequencies in the two diverse solvents. For the other DNA–AgNC, D2O lengthened the ns decay time and made the fluorescence quantum yield approach unity at 5 °C. We investigated the effect of using D2O versus H2O as solvent on the spectroscopic properties of two NIR emissive DNA-stabilized silver nanoclusters (DNA–AgNCs).![]()
Collapse
Affiliation(s)
- Cecilia Cerretani
- Department of Chemistry, University of Copenhagen Universitetsparken 5 Copenhagen 2100 Denmark
| | - Gustav Palm-Henriksen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 Copenhagen 2100 Denmark
| | - Mikkel B Liisberg
- Department of Chemistry, University of Copenhagen Universitetsparken 5 Copenhagen 2100 Denmark
| | - Tom Vosch
- Department of Chemistry, University of Copenhagen Universitetsparken 5 Copenhagen 2100 Denmark
| |
Collapse
|