1
|
Singh AN, Limmer DT. Splitting probabilities as optimal controllers of rare reactive events. J Chem Phys 2024; 161:054113. [PMID: 39101534 DOI: 10.1063/5.0203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
The committor constitutes the primary quantity of interest within chemical kinetics as it is understood to encode the ideal reaction coordinate for a rare reactive event. We show the generative utility of the committor in that it can be used explicitly to produce a reactive trajectory ensemble that exhibits numerically exact statistics as that of the original transition path ensemble. This is done by relating a time-dependent analog of the committor that solves a generalized bridge problem to the splitting probability that solves a boundary value problem under a bistable assumption. By invoking stochastic optimal control and spectral theory, we derive a general form for the optimal controller of a bridge process that connects two metastable states expressed in terms of the splitting probability. This formalism offers an alternative perspective into the role of the committor and its gradients in that they encode force fields that guarantee reactivity, generating trajectories that are statistically identical to the way that a system would react autonomously.
Collapse
Affiliation(s)
- Aditya N Singh
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Herrero C, Berthier L. Direct Numerical Analysis of Dynamic Facilitation in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2024; 132:258201. [PMID: 38996241 DOI: 10.1103/physrevlett.132.258201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
We propose a computational strategy to quantify the temperature evolution of the timescales and length scales over which dynamic facilitation affects the relaxation dynamics of glass-forming liquids at low temperatures, which requires no assumption about the nature of the dynamics. In two glass models, we find that dynamic facilitation depends strongly on temperature, leading to a subdiffusive spreading of relaxation events which we characterize using a temperature-dependent dynamic exponent. We also establish that this temperature evolution represents a major contribution to the increase of the structural relaxation time.
Collapse
|
3
|
Hasyim MR, Mandadapu KK. Emergent facilitation and glassy dynamics in supercooled liquids. Proc Natl Acad Sci U S A 2024; 121:e2322592121. [PMID: 38805280 PMCID: PMC11161792 DOI: 10.1073/pnas.2322592121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/01/2024] [Indexed: 05/30/2024] Open
Abstract
In supercooled liquids, dynamical facilitation refers to a phenomenon where microscopic motion begets further motion nearby, resulting in spatially heterogeneous dynamics. This is central to the glassy relaxation dynamics of such liquids, which show super-Arrhenius growth of relaxation timescales with decreasing temperature. Despite the importance of dynamical facilitation, there is no theoretical understanding of how facilitation emerges and impacts relaxation dynamics. Here, we present a theory that explains the microscopic origins of dynamical facilitation. We show that dynamics proceeds by localized bond-exchange events, also known as excitations, resulting in the accumulation of elastic stresses with which new excitations can interact. At low temperatures, these elastic interactions dominate and facilitate the creation of new excitations near prior excitations. Using the theory of linear elasticity and Markov processes, we simulate a model, which reproduces multiple aspects of glassy dynamics observed in experiments and molecular simulations, including the stretched exponential decay of relaxation functions, the super-Arrhenius behavior of relaxation timescales as well as their two-dimensional finite-size effects. The model also predicts the subdiffusive behavior of the mean squared displacement (MSD) on short, intermediate timescales. Furthermore, we derive the phonon contributions to diffusion and relaxation, which when combined with the excitation contributions produce the two-step relaxation processes, and the ballistic-subdiffusive-diffusive crossover MSD behaviors commonly found in supercooled liquids.
Collapse
Affiliation(s)
- Muhammad R. Hasyim
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Kranthi K. Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| |
Collapse
|
4
|
Dyre JC. Solid-that-Flows Picture of Glass-Forming Liquids. J Phys Chem Lett 2024; 15:1603-1617. [PMID: 38306474 PMCID: PMC10875679 DOI: 10.1021/acs.jpclett.3c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
This perspective article reviews arguments that glass-forming liquids are different from those of standard liquid-state theory, which typically have a viscosity in the mPa·s range and relaxation times on the order of picoseconds. These numbers grow dramatically and become 1012 - 1015 times larger for liquids cooled toward the glass transition. This translates into a qualitative difference, and below the "solidity length" which is roughly one micron at the glass transition, a glass-forming liquid behaves much like a solid. Recent numerical evidence for the solidity of ultraviscous liquids is reviewed, and experimental consequences are discussed in relation to dynamic heterogeneity, frequency-dependent linear-response functions, and the temperature dependence of the average relaxation time.
Collapse
Affiliation(s)
- Jeppe C Dyre
- "Glass and Time", IMFUFA, Dept. of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
5
|
Ozawa M, Biroli G. Elasticity, Facilitation, and Dynamic Heterogeneity in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2023; 130:138201. [PMID: 37067329 DOI: 10.1103/physrevlett.130.138201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
We study the role of elasticity-induced facilitation on the dynamics of glass-forming liquids by a coarse-grained two-dimensional model in which local relaxation events, taking place by thermal activation, can trigger new relaxations by long-range elastically mediated interactions. By simulations and an analytical theory, we show that the model reproduces the main salient facts associated with dynamic heterogeneity and offers a mechanism to explain the emergence of dynamical correlations at the glass transition. We also discuss how it can be generalized and combined with current theories.
Collapse
Affiliation(s)
- Misaki Ozawa
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| |
Collapse
|
6
|
Shiba H, Hanai M, Suzumura T, Shimokawabe T. BOTAN: BOnd TArgeting Network for prediction of slow glassy dynamics by machine learning relative motion. J Chem Phys 2023; 158:084503. [PMID: 36859106 DOI: 10.1063/5.0129791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Recent developments in machine learning have enabled accurate predictions of the dynamics of slow structural relaxation in glass-forming systems. However, existing machine learning models for these tasks are mostly designed such that they learn a single dynamic quantity and relate it to the structural features of glassy liquids. In this study, we propose a graph neural network model, "BOnd TArgeting Network," that learns relative motion between neighboring pairs of particles, in addition to the self-motion of particles. By relating the structural features to these two different dynamical variables, the model autonomously acquires the ability to discern how the self motion of particles undergoing slow relaxation is affected by different dynamical processes, strain fluctuations and particle rearrangements, and thus can predict with high precision how slow structural relaxation develops in space and time.
Collapse
Affiliation(s)
- Hayato Shiba
- Information Technology Center, University of Tokyo, Chiba 277-0882, Japan
| | - Masatoshi Hanai
- Information Technology Center, University of Tokyo, Chiba 277-0882, Japan
| | - Toyotaro Suzumura
- Information Technology Center, University of Tokyo, Chiba 277-0882, Japan
| | | |
Collapse
|
7
|
Hasyim MR, Batton CH, Mandadapu KK. Supervised learning and the finite-temperature string method for computing committor functions and reaction rates. J Chem Phys 2022; 157:184111. [DOI: 10.1063/5.0102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A central object in the computational studies of rare events is the committor function. Though costly to compute, the committor function encodes complete mechanistic information of the processes involving rare events, including reaction rates and transition-state ensembles. Under the framework of transition path theory, Rotskoff et al. [ Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, Proceedings of Machine Learning Research (PLMR, 2022), Vol. 145, pp. 757–780] proposes an algorithm where a feedback loop couples a neural network that models the committor function with importance sampling, mainly umbrella sampling, which collects data needed for adaptive training. In this work, we show additional modifications are needed to improve the accuracy of the algorithm. The first modification adds elements of supervised learning, which allows the neural network to improve its prediction by fitting to sample-mean estimates of committor values obtained from short molecular dynamics trajectories. The second modification replaces the committor-based umbrella sampling with the finite-temperature string (FTS) method, which enables homogeneous sampling in regions where transition pathways are located. We test our modifications on low-dimensional systems with non-convex potential energy where reference solutions can be found via analytical or finite element methods, and show how combining supervised learning and the FTS method yields accurate computation of committor functions and reaction rates. We also provide an error analysis for algorithms that use the FTS method, using which reaction rates can be accurately estimated during training with a small number of samples. The methods are then applied to a molecular system in which no reference solution is known, where accurate computations of committor functions and reaction rates can still be obtained.
Collapse
Affiliation(s)
- Muhammad R. Hasyim
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Clay H. Batton
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Kranthi K. Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Lerbinger M, Barbot A, Vandembroucq D, Patinet S. Relevance of Shear Transformations in the Relaxation of Supercooled Liquids. PHYSICAL REVIEW LETTERS 2022; 129:195501. [PMID: 36399740 DOI: 10.1103/physrevlett.129.195501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 07/18/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
While deeply supercooled liquids exhibit divergent viscosity and increasingly heterogeneous dynamics as the temperature drops, their structure shows only seemingly marginal changes. Understanding the nature of relaxation processes in this dramatic slowdown is key for understanding the glass transition. Here, we show by atomistic simulations that the heterogeneous dynamics of glass-forming liquids strongly correlate with the local residual plastic strengths along soft directions computed in the initial inherent structures. The correlation increases with decreasing temperature and is maximum in the vicinity of the relaxation time. For the lowest temperature investigated, this maximum is comparable with the best values from the literature dealing with the structure-property relationship. However, the nonlinear probe of the local shear resistance in soft directions provides here a real-space picture of relaxation processes. Our detection method of thermal rearrangements allows us to investigate the first passage time statistics and to study the scaling between the activation energy barriers and the residual plastic strengths. These results shed new light on the nature of relaxations of glassy systems by emphasizing the analogy between the thermal relaxations in viscous liquids and the plastic shear transformation in amorphous solids.
Collapse
Affiliation(s)
- Matthias Lerbinger
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Armand Barbot
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Damien Vandembroucq
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Sylvain Patinet
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
9
|
Ganapathi D, Sood AK, Ganapathy R. Structural origin of excitations in a colloidal glass-former. J Chem Phys 2022; 156:214502. [DOI: 10.1063/5.0088500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite decades of intense research, whether the transformation of supercooled liquids into glass is a kinetic phenomenon or a thermodynamic phase transition remains unknown. Here, we analyzed optical microscopy experiments on 2D binary colloidal glass-forming liquids and investigated the structural links of a prominent kinetic theory of glass transition. We examined a possible structural origin for localized excitations, which are building blocks of the dynamical facilitation theory—a purely kinetic approach for the glass transition. To accomplish this, we utilize machine learning methods to identify a structural order parameter termed “softness” that has been found to be correlated with reorganization events in supercooled liquids. Both excitations and softness qualitatively capture the dynamical slowdown on approaching the glass transition and motivated us to explore spatial and temporal correlations between them. Our results show that excitations predominantly occur in regions with high softness and the appearance of these high softness regions precedes excitations, thus suggesting a causal connection between them. Thus, unifying dynamical and thermodynamical theories into a single structure-based framework may provide a route to understand the glass transition.
Collapse
Affiliation(s)
- Divya Ganapathi
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - A. K. Sood
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|