Jeffries WR, Jawaid AM, Vaia RA, Knappenberger KL. Thickness-dependent electronic relaxation dynamics in solution-phase redox-exfoliated MoS2 heterostructures.
J Chem Phys 2024;
160:144707. [PMID:
38597312 DOI:
10.1063/5.0200398]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Electronic relaxation dynamics of solution-phase redox-exfoliated molybdenum disulfide (MoS2) monolayer and multilayer ensembles are described. MoS2 was exfoliated using polyoxometalate (POM) reductants. This process yields a colloidal heterostructure consisting of MoS2 2D sheet multilayers with surface-bound POM complexes. Using two-dimensional electronic spectroscopy, transient bleaching and photoinduced absorption signals were detected at excitation/detection energies of 1.82/1.87 and 1.82/1.80 eV, respectively. Approximate 100-fs bandgap renormalization (BGR) and subsequent defect- and phonon-mediated relaxation on the picosecond timescale were resolved for several MoS2 thicknesses spanning from 1 to 2 L to ∼20 L. BGR rates were independent of sample thickness and slightly slower than observations for chemical vapor deposition-grown MoS2 monolayers. However, defect-mediated relaxation accelerated ∼10-fold with increased sample thicknesses. The relaxation rates increased from 0.33 ± 0.05 to 1.2 ± 0.1 and 3.1 ± 0.4 ps-1 for 1-2 L, 3-4 L, and 20 L fractions. The thicknesses-dependent relaxation rates for POM-MoS2 heterostructures were modeled using a saturating exponential function that showed saturation at thirteen MoS2 layers. The results suggest that the increased POM surface coverage leads to larger defect density in the POM-MoS2 heterostructure. These are the first descriptions of the influence of sample thickness on electronic relaxation rates in solution-phase redox-exfoliated POM-MoS2 heterostructures. Outcomes of this work are expected to impact the development of solution-phase exfoliation of 2D metal-chalcogenide heterostructures.
Collapse