1
|
Voroshylova IV, Ferreira ESC, Cordeiro MNDS. Influence of Deep Eutectic Solvent Composition on Micelle Properties: A Molecular Dynamics Study. Molecules 2025; 30:574. [PMID: 39942680 PMCID: PMC11821091 DOI: 10.3390/molecules30030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the structural and transport properties of SDS, CTAB, and SB3-12 micelles in three deep eutectic solvents (DESs), Ethaline, Glyceline, and Reline, using molecular dynamics (MD) simulations. The influence of solvent composition on micelle morphology, interactions, and dynamics was explored, revealing key differences driven by the DES environment. Structural analyses, including eccentricity and radius of gyration, demonstrated that micelle shape and compactness vary significantly depending on the solvent. In Ethaline and Reline, larger micelles showed significant deviations from spherical shapes, while micelles in Glyceline became more spherical and compact, particularly those formed by SB3-12. Radial distribution functions highlighted different levels of micelle-solvent interactions, with SDS showing strong interactions with HBD components and SB3-12 exhibiting prominent self-interaction. According to hydrogen bonding analysis, micelles slightly disrupt the DES hydrogen bond network, with SB3-12 establishing the most significant hydrogen bond connections. The transport property analysis revealed that larger micelles have lower diffusion coefficients, whereas smaller micelles enhance DESs' component mobility. These findings advance the understanding of micelle behavior in DESs and also help in the optimization of DES-surfactant systems for applications such as electrodeposition, nanomaterial templating, and drug delivery. Future research will focus on surfactant interactions with surfaces to further improve these applications.
Collapse
Affiliation(s)
- Iuliia V. Voroshylova
- REQUIMTE LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (E.S.C.F.); (M.N.D.S.C.)
| | | | | |
Collapse
|
2
|
Fileti EE, Voroshylova IV, D S Cordeiro MN, Malaspina T. A computational study of the ternary mixtures of NaPF 6-EC and choline glycine ionic liquid. Phys Chem Chem Phys 2025; 27:2090-2100. [PMID: 39764574 DOI: 10.1039/d4cp04061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF6, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF6-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility. Our findings demonstrate that the NaPF6-EC-ChGly mixture exhibits a complex network of electrostatic interactions and hydrogen bonding, with the glycine anion significantly influencing the liquid structure. In mixtures with small additions of ChGly, we observed an optimal balance of diffusion and ionic mobility. These results highlight the potential of ChGly as a green additive to conventional electrolytes, paving the way for more sustainable and high-performance energy storage devices.
Collapse
Affiliation(s)
- Eudes Eterno Fileti
- Institute of Science and Technology, Federal University of São Paulo, 12247-014, São José dos Campos, São Paulo, Brazil.
| | - Iuliia V Voroshylova
- REQUIMTE LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - M Natália D S Cordeiro
- REQUIMTE LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Thaciana Malaspina
- Institute of Science and Technology, Federal University of São Paulo, 12247-014, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
3
|
Cappelluti F, Gontrani L, Mariani A, Galliano S, Carbone M, Bonomo M. Voronoi Tessellation as a Tool for Predicting the Formation of Deep Eutectic Solvents. J Chem Inf Model 2024. [PMID: 38950140 DOI: 10.1021/acs.jcim.3c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Deep eutectic solvents (DESs) have attracted increasing attention in recent years due to their broad applicability in different fields, but their computer-aided discovery, which avoids a time-consuming trial-and-error investigation, is still lagging. In this paper, a set of nine DESs, composed of choline chloride as a hydrogen-bond acceptor and nine functionalized phenols as hydrogen bond donors, is simulated by using classical molecular dynamics to investigate the possible formation of a DES. The tool of the Voronoi tessellation analysis is employed for producing an intuitive and straightforward representation of the degree of mixing between the different components of the solutions, therefore permitting the definition of a metric quantifying the propensity of the components to produce a uniform solution. The computational findings agree with the experimental results, thus confirming that the Voronoi tessellation analysis can act as a lightweight yet powerful approach for the high-throughput screening of mixtures in the optics of the new DES design.
Collapse
Affiliation(s)
| | - Lorenzo Gontrani
- Startnetics - Department of Chemical Science and Technologies University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessandro Mariani
- Elettra Synchrotron of Trieste, SS per Basovizza, Basovizza, 34149 Trieste, Italy
| | - Simone Galliano
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via G. Quarello 15/a, 10135 Turin, Italy
| | - Marilena Carbone
- Startnetics - Department of Chemical Science and Technologies University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Matteo Bonomo
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via G. Quarello 15/a, 10135 Turin, Italy
- Department of Chemistry, University of Rome, La Sapienza, P.le A. Moro, 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Sahoo CP, Panda DK, Bhargava BL. Computational insight into the effect of alkyl chain length in tetraalkylammonium-based deep eutectic solvents. J Mol Graph Model 2024; 128:108717. [PMID: 38281418 DOI: 10.1016/j.jmgm.2024.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The effect of the increase in the alkyl chain length of cation on the properties of deep eutectic solvents based on ethylene glycol has been investigated employing classical molecular dynamics simulations. The change in the structural and dynamic properties in both the bulk and liquid-vapor interface is explored through various analyses. The interaction between the anion and the ethylene glycol increases with an increase in the alkyl chain length of the cation, as observed in the increase of the lifetime of the hydrogen bond formed between the two. The terminal carbon atoms are found to be closer to each other when the cation changes from tetraethylammonium to tetrabutylammonium. The cations are located closer to the interface, and the association of the alkyl chains becomes more significant with increased alkyl chain length, decreasing the surface tension values.
Collapse
Affiliation(s)
- Chandan Prasad Sahoo
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, P.O.: Jatni, Khurda, Odisha 752050, India
| | - Deepak Kumar Panda
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, P.O.: Jatni, Khurda, Odisha 752050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, P.O.: Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
5
|
Alfurayj I, Prado DM, Prado RC, Samia AC, Burda C. Unusual Hydration Properties of Choline Fluoride-Based Deep Eutectic Solvents. J Phys Chem B 2024; 128:2762-2772. [PMID: 38466242 DOI: 10.1021/acs.jpcb.3c07625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The hydration properties of the fluoride-based deep eutectic solvent ethalineF [a solution of choline fluoride in ethylene glycol (EG) at a 1:2 molar ratio] are studied and compared to the most common deep eutectic solvent ethaline (the solution of choline chloride in EG at 1:2 molar ratio). The densities of the deep eutectic solvent (DES) based on choline fluoride in EG (ethalineF) and its mixtures with water as cosolvent are measured over the temperature range of 298-323 K. The excess properties, including excess molar volumes, excess partial molar volumes, and viscosity deviations from ideal behavior, are calculated for ethalineF/water and ethaline/water mixtures and compared. The experimental excess molar volumes and viscosity deviations of the studied pseudobinary mixtures are fitted using the Redlich-Kister (R-K) equation. The results of the R-K model successfully reproduced the experimentally calculated values with minimal standard deviations. All excess molar volumes and viscosity deviations had negative values, indicating stronger solvation interactions between the mixture components than between each pure DES or water. The excess partial molar volumes show that water molecules are preferentially solvated by the DES environment. We show that the disruption of the DES interactions (primarily OH...halide interactions) by high mole fractions of water is related to the peak ionic conductivity. The stark differences in hydration behavior between fluoride- and chloride-based ethaline are analyzed and discussed.
Collapse
Affiliation(s)
- Ibrahim Alfurayj
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Desiree Mae Prado
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ross Clark Prado
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Anna Cristina Samia
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
6
|
Mjalli FS, Shakourian-Fard M, Kamath G, Murshid G, Naser J, Al Ma'awali S. Experimental and theoretical study of the physicochemical properties of the novel imidazole-based eutectic solvent. J Mol Graph Model 2023; 118:108319. [PMID: 36137434 DOI: 10.1016/j.jmgm.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Novel solvents and their applications are experiencing an increasing interest by the scientific community. Imidazole has been utilized as a major component in many successful ionic liquids. However, very limited studies were reported for using it as a hydrogen bond acceptor in the synthesis of eutectic solvents. In this work, a novel eutectic solvent composed of Imidazole and Monoethanolamine (MEA) is synthesized at different molar ratios. The basic physicochemical properties such as melting point, density, viscosity, and refractive index were measured at different temperatures and modeled as a function of molar composition and temperature. FTIR and 1H NMR analyses were conducted and, the nature and strength of the molecular interaction between the two solvent molecules were investigated by conducting combined molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The study revealed the electrostatic H-bonding nature of interaction with strength related to their bond distances. The binding energy between the two DES ingredients is proportional to the amount of MEA in the DES due to increasing the H-bonding interactions between Imidazole and MEA molecules. These findings suggest that DES might be used in a variety of chemical and industrial applications.
Collapse
Affiliation(s)
- Farouq S Mjalli
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Mehdi Shakourian-Fard
- Department of Chemical Engineering, Birjand University of Technology, Birjand, P.O. Box 97175/569, Iran
| | - Ganesh Kamath
- Dalzierfiver LLC, 3500 Carlfied St, EL Sobrante, CA, 94803, USA
| | - Ghulam Murshid
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman
| | - Jamil Naser
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman
| | - Suhaib Al Ma'awali
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Chatterjee S, Deshmukh SH, Bagchi S. Does Viscosity Drive the Dynamics in an Alcohol-Based Deep Eutectic Solvent? J Phys Chem B 2022; 126:8331-8337. [PMID: 36200737 DOI: 10.1021/acs.jpcb.2c06521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deep eutectic solvents, consisting of heterogeneous nanodomains of hydrogen-bonded networks, have evolved into a range of viscous fluids that find applications in several fields. As viscosity is known to influence the dynamics of other neoteric solvents like ionic liquids, understanding the effect of viscosity on deep eutectic solvents is crucial to realize their full potential. Herein, we combine polarization-selective pump-probe spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations to elucidate the impact of viscosity on the dynamics of an alcohol-based deep eutectic solvent, ethaline. We compare the solvent fluctuation and solute reorientation time scales in ethaline with those in ethylene glycol, an ethaline constituent. Interestingly, we find that the solute's reorientation apparently scales the bulk viscosity of the solvent, but the same is not valid for the overall solvation dynamics. Using the variations in the estimated intercomponent hydrogen bond lifetimes, we show that a dissolved solute does not sense the bulk viscosity of the deep eutectic solvent; instead, it senses domain-specific local viscosity determined by the making and breaking of the hydrogen bond network. Our results indicate that understanding the domain-specific local environment experienced by the dissolved solute is of utmost importance in deep eutectic solvents.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Samadhan H Deshmukh
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
8
|
Velez C, Acevedo O. Simulation of deep eutectic solvents: Progress to promises. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Caroline Velez
- Department of Chemistry University of Miami Coral Gables Florida USA
| | - Orlando Acevedo
- Department of Chemistry University of Miami Coral Gables Florida USA
| |
Collapse
|
9
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
10
|
Cao J, Zhu F, Dong Q, Wu R, Su E. Insight into the physicochemical properties of deep eutectic solvents by systematically investigating the components. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Abbott AP, Edler KJ, Page AJ. Deep eutectic solvents-The vital link between ionic liquids and ionic solutions. J Chem Phys 2021; 155:150401. [PMID: 34686062 DOI: 10.1063/5.0072268] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
When selecting a solvent for a given solute, the strongly held idiom "like dissolves like", meaning that polar solvents are used for polar solutes, is often used. This idea has resulted from the concept that most molecular solvents are homogeneous. In a deep eutectic solvent (DES), however, both components can be ionic or non-ionic, polar or non-polar. By tuning the components, DESs can solubilize a wide variety of solutes, often mixing hydrophobic and hydrophilic components, and the mixture can be designed to control phase behavior. The liquids often contain significant short-length order, and preferential solvation of one component often occurs. The addition of small polar molecules such as water or alcohols results in non-homogeneous liquids, which have significantly decreased viscosity and increased ionic conductivity. Accordingly, the areas covered in this special issue focus on structure and dynamics, solvation, the mobility of charged species, and the ability to obtain controllable phase behavior by adding polar diluents or using hydrophobic DESs.
Collapse
Affiliation(s)
- Andrew P Abbott
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Alister J Page
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| |
Collapse
|