1
|
Chen Y, Zhou X, Liu X, Tang Z, Wang L, Tang Q. Understanding the Role of Potential and Cation Effect on Electrocatalytic CO 2 Reduction in All-Alkynyl-Protected Ag 15 Nanoclusters. J Am Chem Soc 2025; 147:2699-2713. [PMID: 39772524 DOI: 10.1021/jacs.4c15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Atomically precise metal nanoclusters (NCs) have emerged as an intriguing class of model catalysts for electrochemical CO2 reduction reactions (CO2RR). However, the interplay between the interface environment (e.g., potential, cation concentration) and electron-proton transfer (ET/PT) kinetics─particularly in alkynyl-protected metal NCs─remains poorly understood. Here, we combined first-principles simulations and electrochemical experiments to investigate the role of potential and cation effect on CO2RR performance in a prototype all-alkynyl-protected Ag15(C≡C-CH3)+ cluster. Our simulations revealed that the applied reduction potential triggers the elimination of the alkynyl ligand via sequentially breaking two π-type Ag-C bonds and one σ-type Ag-C bond to expose the catalytically active Ag sites, and the barrier of the Ag-C breakage monotonically decreases with the lowering in potential. Furthermore, we show that introducing the inner-sphere Na+ ions greatly enhances *CO2 activation and promotes proton transfer to generate *COOH and *CO by forming the Na+-CO2(*COOH) complexes, while the competitive hydrogen evolution reaction (HER) from water dissociation is greatly suppressed, thus dramatically improving the selectivity of CO2 electroreduction. The electrochemical measurements further validated our predictions, where the CO Faradaic efficiency (FECO) and current density (jCO) show a pronounced dependence on the Na+ concentration. At an optimal concentration of 0.1 M NaCl, FECO can reach up to ∼96%, demonstrating the crucial role of cations in promoting the CO2RR. Our findings provide vital insights into the atomic-level reaction mechanism of the CO2RR on alkynyl-protected Ag15 NCs and highlight the important role of potential and electrolyte cation in governing the electron/proton transfer kinetics.
Collapse
Affiliation(s)
- Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Xia Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xunying Liu
- New Energy Research Institute, School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Shingyouchi Y, Ogami M, Biswas S, Tanaka T, Kamiyama M, Ikeda K, Hossain S, Yoshigoe Y, Osborn DJ, Metha GF, Kawawaki T, Negishi Y. Ligand-Dependent Intracluster Interactions in Electrochemical CO 2 Reduction Using Cu 14 Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409910. [PMID: 39632376 DOI: 10.1002/smll.202409910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) has been extensively studied because it can be leveraged to directly convert CO2 into valuable hydrocarbons. Among the various catalysts, copper nanoclusters (Cu NCs) exhibit high selectivity and efficiency for producing CO2RR products owing to their unique geometric/electronic structures. However, the influence of protective ligands on the CO2RR performance of Cu NCs remains unclear. In this study, it is shown that different thiolate ligands, despite having nearly identical geometries, can substantially affect the electrochemical stability of Cu14 NCs in the CO2RR. Notably, Cu14 NCs protected by 2-phenylethanethiolate exhibit greater stability and achieve a relatively higher selectivity (≈40%) for formic acid production compared with the cyclohexanethiolate-protected counterpart. These insights are crucial for designing Cu NCs that are both stable and highly selective, enhancing their efficacy for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Yamato Shingyouchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Masaki Ogami
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sourav Biswas
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomoya Tanaka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Maho Kamiyama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kaoru Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yusuke Yoshigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - D J Osborn
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Gregory F Metha
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Carbon Value Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Carbon Value Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
3
|
Mymoona P, Rival JV, Nonappa, Shibu ES, Jeyabharathi C. Platinum-Grafted Twenty-Five Atom Gold Nanoclusters for Robust Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308610. [PMID: 38128011 DOI: 10.1002/smll.202308610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A robust hydrogen evolution is demonstrated from Au25(PET)18]- nanoclusters (PET = 2-phenylethanethiol) grafted with minimal platinum atoms. The fabrication involves an electrochemical activation of nanoclusters by partial removal of thiols, without affecting the metallic core, which exposes Au-sites adsorbed with hydrogen and enables an electroless grafting of platinum. The exposed Au-sites feature the (111)-facet of the fcc-Au25 nanoclusters as assessed through lead underpotential deposition. The electrochemically activated nanoclusters (without Pt loading) show better electrocatalytic reactivity toward hydrogen evolution reaction than the pristine nanoclusters in an acidic medium. The platinum-grafted nanocluster outperformed with a lower overpotential of 0.117 V vs RHE (RHE = Reversible Hydrogen Electrode) compared to electrochemically activated nanoclusters (0.353 V vs RHE ) at 10 mA cm-2 and is comparable with commercial Pt/C. The electrochemically activated nanoclusters show better reactivity at higher current density owing to the ease of hydrogen release from the active sites. The modified nanoclusters show unique supramolecular self-assembly characteristics as observed in electron microscopy and tomography due to the possible metallophilic interactions. These results suggest that the post-surface modification of nanoclusters will be an ideal tool to address the sustainable production of green hydrogen.
Collapse
Affiliation(s)
- Paloli Mymoona
- Electroplating and Metal Finishing Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut (UOC), Malappuram, Kerala, 673635, India
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut (UOC), Malappuram, Kerala, 673635, India
| | - Chinnaiah Jeyabharathi
- Electroplating and Metal Finishing Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Motamedisade A, Johnston MR, Alotaibi AEH, Andersson GA. Au 9 nanocluster adsorption and agglomeration control through sulfur modification of mesoporous TiO 2. Phys Chem Chem Phys 2024; 26:9500-9509. [PMID: 38450597 DOI: 10.1039/d3cp05353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In the present work phenyl phosphine-protected Au9 nanoclusters were deposited onto (3-mercaptopropyl) trimethoxysilane (MPTMS) modified and unmodified mesoporous screen printed TiO2. The removal of the cluster ligands by annealing was applied to enhance the interaction between Au cluster cores and semiconductor surfaces in the creation of efficient photocatalytic systems. The heat treatment could lead to undesired agglomeration of Au clusters, affecting their unique properties as size specific clusters. To address this challenge, the semiconductor surfaces were modified by MPTMS. Characterization techniques confirm the effectiveness of the modification processes, and XPS demonstrates that S functionalized MTiO2 is more efficient than MTiO2 in increasing Au9 NCs adsorption by a factor of 10 and preventing Au cluster agglomeration even after annealing. Overall, this work contributes valuable insights into photocatalytic systems through controlled modification of semiconductor surfaces and Au nanocluster deposition.
Collapse
Affiliation(s)
- Anahita Motamedisade
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide 5042, Australia.
| | - Martin R Johnston
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide 5042, Australia.
| | - Amjad E H Alotaibi
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide 5042, Australia.
| | - Gunther A Andersson
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
5
|
Sibug-Torres SM, Grys DB, Kang G, Niihori M, Wyatt E, Spiesshofer N, Ruane A, de Nijs B, Baumberg JJ. In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors. Nat Commun 2024; 15:2022. [PMID: 38448412 PMCID: PMC10917746 DOI: 10.1038/s41467-024-46097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) harnesses the confinement of light into metallic nanoscale hotspots to achieve highly sensitive label-free molecular detection that can be applied for a broad range of sensing applications. However, challenges related to irreversible analyte binding, substrate reproducibility, fouling, and degradation hinder its widespread adoption. Here we show how in-situ electrochemical regeneration can rapidly and precisely reform the nanogap hotspots to enable the continuous reuse of gold nanoparticle monolayers for SERS. Applying an oxidising potential of +1.5 V (vs Ag/AgCl) for 10 s strips a broad range of adsorbates from the nanogaps and forms a metastable oxide layer of few-monolayer thickness. Subsequent application of a reducing potential of -0.80 V for 5 s in the presence of a nanogap-stabilising molecular scaffold, cucurbit[5]uril, reproducibly regenerates the optimal plasmonic properties with SERS enhancement factors ≈106. The regeneration of the nanogap hotspots allows these SERS substrates to be reused over multiple cycles, demonstrating ≈5% relative standard deviation over at least 30 cycles of analyte detection and regeneration. Such continuous and reliable SERS-based flow analysis accesses diverse applications from environmental monitoring to medical diagnostics.
Collapse
Affiliation(s)
- Sarah May Sibug-Torres
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - David-Benjamin Grys
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Gyeongwon Kang
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Marika Niihori
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Elle Wyatt
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Nicolas Spiesshofer
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ashleigh Ruane
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
6
|
Kawawaki T, Negishi Y. Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Trans 2023; 52:15152-15167. [PMID: 37712891 DOI: 10.1039/d3dt02005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Metal nanoclusters (NCs) with sizes of approximately 2 nm or less have different physical/chemical properties from those of the bulk metals owing to quantum size effects. Metal NCs, which can be size-controlled and heterometal doped at atomic accuracy, are expected to be the next generation of important materials, and new metal NCs are reported regularly. However, compared with conventional materials such as metal complexes and relatively large metal nanoparticles (>2 nm), these metal NCs are still underdeveloped in terms of evaluation and establishment of application methods. Electrochemical measurements are one of the most widely used methods for synthesis, application, and characterisation of metal NCs. This review summarizes the basic knowledge of the electrochemistry and experimental techniques, and provides examples of the reported electronic states of thiolate-protected gold NCs elucidated by electrochemical approaches. It is expected that this review will provide useful information for researchers starting to study metal NCs.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
7
|
Sun F, Qin L, Tang Z, Deng G, Bootharaju MS, Wei Z, Tang Q, Hyeon T. -SR removal or -R removal? A mechanistic revisit on the puzzle of ligand etching of Au 25(SR) 18 nanoclusters during electrocatalysis. Chem Sci 2023; 14:10532-10546. [PMID: 37800008 PMCID: PMC10548520 DOI: 10.1039/d3sc03018k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/07/2023] Open
Abstract
Accurate identification of active sites is highly desirable for elucidation of the reaction mechanism and development of efficient catalysts. Despite the promising catalytic performance of thiolated metal nanoclusters (NCs), their actual catalytic sites remain elusive. Traditional first-principles calculations and experimental observations suggested dealkylated S and dethiolated metal, respectively, to be the active centers. However, the real kinetic origin of thiolate etching during the electrocatalysis of NCs is still puzzling. Herein, we conducted advanced first-principles calculations and electrochemical/spectroscopic experiments to unravel the electrochemical etching kinetics of thiolate ligands in prototype Au25(SCH3)18 NC. The electrochemical processes are revealed to be spontaneously facilitated by dethiolation (i.e., desorption of -SCH3), forming the free HSCH3 molecule after explicitly including the solvent effect and electrode potential. Thus, exposed under-coordinated Au atoms, rather than the S atoms, serve as the real catalytic sites. The thermodynamically preferred Au-S bond cleavage arises from the selective attack of H from proton/H2O on the S atom under suitable electrochemical bias due to the spatial accessibility and the presence of S lone pair electrons. Decrease of reduction potential promotes the proton attack on S and significantly accelerates the kinetics of Au-S bond breakage irrespective of the pH of the medium. Our theoretical results are further verified by the experimental electrochemical and spectroscopic data. At more negative electrode potentials, the number of -SR ligands decreased with concomitant increase of the vibrational intensity of S-H bonds. These findings together clarify the atomic-level activation mechanism on the surface of Au25(SR)18 NCs.
Collapse
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
8
|
Yu F, Li J, Liu Z, Wang R, Zhu Y, Huang W, Liu Z, Wang Z. From Atomic Physics to Superatomic Physics. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Liu M, Liu K, Gao C. Effects of Ligands on Synthesis and Surface‐Engineering of Noble Metal Nanocrystals for Electrocatalysis. ChemElectroChem 2022. [DOI: 10.1002/celc.202200651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Moxuan Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| | - Kai Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| | - Chuanbo Gao
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
10
|
Yan H, Xiang H, Liu J, Cheng R, Ye Y, Han Y, Yao C. The Factors Dictating Properties of Atomically Precise Metal Nanocluster Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200812. [PMID: 35403353 DOI: 10.1002/smll.202200812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Metal nanoparticles occupy an important position in electrocatalysis. Unfortunately, by using conventional synthetic methodology, it is a great challenge to realize the monodisperse composition/structure of metal nanoparticles at the atomic level, and to establish correlations between the catalytic properties and the structure of individual catalyst particles. For the study of well-defined nanocatalysts, great advances have been made for the successful synthesis of nanoparticles with atomic precision, notably ligand-passivated metal nanoclusters. Such well-defined metal nanoclusters have become a type of model catalyst and have shown great potential in catalysis research. In this review, the authors summarize the advances in the utilization of atomically precise metal nanoclusters for electrocatalysis. In particular, the factors (e.g., size, metal doping/alloying, ligand engineering, support materials as well as charge state of clusters) affecting selectivity and activity of catalysts are highlighted. The authors aim to provide insightful guidelines for the rational design of electrocatalysts with high performance and perspectives on potential challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Hao Yan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huixin Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Jiaohu Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Ranran Cheng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yongqi Ye
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Chuanhao Yao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
11
|
Nagarajan AV, Loevlie DJ, Cowan MJ, Mpourmpakis G. Resolving electrocatalytic imprecision in atomically precise metal nanoclusters. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Aikens CM, Jin R, Roy X, Tsukuda T. From atom-precise nanoclusters to superatom materials. J Chem Phys 2022; 156:170401. [PMID: 35525653 DOI: 10.1063/5.0095770] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Yu S, Louisia S, Yang P. The Interactive Dynamics of Nanocatalyst Structure and Microenvironment during Electrochemical CO 2 Conversion. JACS AU 2022; 2:562-572. [PMID: 35373197 PMCID: PMC8965827 DOI: 10.1021/jacsau.1c00562] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/01/2023]
Abstract
In the pursuit of a decarbonized society, electrocatalytic CO2 conversion has drawn tremendous research interest in recent years as a promising route to recycling CO2 into more valuable chemicals. To achieve high catalytic activity and selectivity, nanocatalysts of diverse structures and compositions have been designed. However, the dynamic structural transformation of the nanocatalysts taking place under operating conditions makes it difficult to study active site configurations present during the CO2 reduction reaction (CO2RR). In addition, although recognized as consequential to the catalytic performance, the reaction microenvironment generated near the nanocatalyst surface during CO2RR and its impact are still an understudied research area. In this Perspective, we discuss current understandings and difficulties associated with investigating such dynamic aspects of both the surface reaction site and its surrounding reaction environment as a whole. We further highlight the interactive influence of the structural transformation and the microenvironment on the catalytic performance of nanocatalysts. We also present future research directions to control the structural evolution of nanocatalysts and tailor their reaction microenvironment to achieve an ideal catalyst for improved electrochemical CO2RR.
Collapse
Affiliation(s)
- Sunmoon Yu
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sheena Louisia
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Zhu Q, Murphy CJ, Baker LR. Opportunities for Electrocatalytic CO 2 Reduction Enabled by Surface Ligands. J Am Chem Soc 2022; 144:2829-2840. [PMID: 35137579 DOI: 10.1021/jacs.1c11500] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To achieve high selectivity in enzyme catalysis, nature carefully controls both the catalyst active site and the pocket or environment that mediates access and the geometry of a reactant. Despite the many advantages of heterogeneous catalysis, active sites on a surface are rarely defined with atomic precision, making it difficult to control reaction selectivity with the molecular precision of homogeneous systems. In colloidal nanoparticle synthesis, structural control is accomplished using a surface ligand or capping layer that stabilizes a specific particle morphology and prevents nanoparticle aggregation. Usually, these surface ligands are considered detrimental for catalysis because they occupy otherwise active surface sites. However, a number of examples have shown that surface ligands can play a beneficial role in defining the catalytic environment and enhancing performance by a variety of mechanisms. This perspective summarizes recent advances and opportunities using surface ligands to enhance the performance of nanocatalysts for electrochemical CO2 reduction. Several mechanisms are discussed, including selective permeability, modulating interfacial solvation structure and electric fields, chemical activation, and templating active site selection. These examples inform strategies and point to emerging opportunities to design nanocatalysts toward molecular level control of electrochemical CO2 conversion.
Collapse
Affiliation(s)
- Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|