1
|
Fujiki Y, Matsuyama T, Kikkawa S, Hirayama J, Takaya H, Nakatani N, Yasuda N, Nitta K, Negishi Y, Yamazoe S. Counteranion-induced structural isomerization of phosphine-protected PdAu 8 and PtAu 8 clusters. Commun Chem 2023; 6:129. [PMID: 37340116 DOI: 10.1038/s42004-023-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Controlling the geometric structures of metal clusters through structural isomerization allows for tuning of their electronic state. In this study, we successfully synthesized butterfly-motif [PdAu8(PPh3)8]2+ (PdAu8-B, B means butterfly-motif) and [PtAu8(PPh3)8]2+ (PtAu8-B) by the structural isomerization from crown-motif [PdAu8(PPh3)8]2+ (PdAu8-C, C means crown-motif) and [PtAu8(PPh3)8]2+ (PtAu8-C), induced by association with anionic polyoxometalate, [Mo6O19]2- (Mo6) respectively, whereas their structural isomerization was suppressed by the use of [NO3]- and [PMo12O40]3- as counter anions. DR-UV-vis-NIR and XAFS analyses and density functional theory calculations revealed that the synthesized [PdAu8(PPh3)8][Mo6O19] (PdAu8-Mo6) and [PtAu8(PPh3)8][Mo6O19] (PtAu8-Mo6) had PdAu8-B and PtAu8-B respectively because PdAu8-Mo6 and PtAu8-Mo6 had bands in optical absorption at the longer wavelength region and different structural parameters characteristic of the butterfly-motif structure obtained by XAFS analysis. Single-crystal and powder X-ray diffraction analyses revealed that PdAu8-B and PtAu8-B were surrounded by six Mo6 with rock salt-type packing, which stabilizes the semi-stable butterfly-motif structure to overcome high activation energy for structural isomerization.
Collapse
Affiliation(s)
- Yu Fujiki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Tomoki Matsuyama
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan
| | - Jun Hirayama
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan
| | - Hikaru Takaya
- Department of Life & Health Sciences, Teikyo University of Science, 2-2-1 Senjyusakuragi, Adachi-ku, Tokyo, 120-0045, Japan
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Nobuhiro Yasuda
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kiyofumi Nitta
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
2
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
3
|
Aikens CM, Jin R, Roy X, Tsukuda T. From atom-precise nanoclusters to superatom materials. J Chem Phys 2022; 156:170401. [PMID: 35525653 DOI: 10.1063/5.0095770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|