1
|
Linker TM, Krishnamoorthy A, Daemen LL, Ramirez-Cuesta AJ, Nomura K, Nakano A, Cheng YQ, Hicks WR, Kolesnikov AI, Vashishta PD. Neutron scattering and neural-network quantum molecular dynamics investigation of the vibrations of ammonia along the solid-to-liquid transition. Nat Commun 2024; 15:3911. [PMID: 38724541 PMCID: PMC11082248 DOI: 10.1038/s41467-024-48246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Vibrational spectroscopy allows us to understand complex physical and chemical interactions of molecular crystals and liquids such as ammonia, which has recently emerged as a strong hydrogen fuel candidate to support a sustainable society. We report inelastic neutron scattering measurement of vibrational properties of ammonia along the solid-to-liquid phase transition with high enough resolution for direct comparisons to ab-initio simulations. Theoretical analysis reveals the essential role of nuclear quantum effects (NQEs) for correctly describing the intermolecular spectrum as well as high energy intramolecular N-H stretching modes. This is achieved by training neural network models using ab-initio path-integral molecular dynamics (PIMD) simulations, thereby encompassing large spatiotemporal trajectories required to resolve low energy dynamics while retaining NQEs. Our results not only establish the role of NQEs in ammonia but also provide general computational frameworks to study complex molecular systems with NQEs.
Collapse
Affiliation(s)
- T M Linker
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA, 90089-0242, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - A Krishnamoorthy
- Department of Mechanical Engineering Texas A&M, 400 Bizzell St, College Station, TX, 77843, USA
| | - L L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - A J Ramirez-Cuesta
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - K Nomura
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA, 90089-0242, USA
| | - A Nakano
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA, 90089-0242, USA
| | - Y Q Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - W R Hicks
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - A I Kolesnikov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - P D Vashishta
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA, 90089-0242, USA.
| |
Collapse
|
2
|
Schireman RG, Maul J, Erba A, Ruggiero MT. Anharmonic Coupling of Stretching Vibrations in Ice: A Periodic VSCF and VCI Description. J Chem Theory Comput 2022; 18:4428-4437. [PMID: 35737003 DOI: 10.1021/acs.jctc.2c00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anharmonicity of O-H stretching vibrations of water ice is characterized by use of a periodic implementation of the vibrational self-consistent field (VSCF) and vibrational configuration interaction (VCI) methods, which take phonon-phonon couplings explicitly into account through numerical evaluation of high-order terms of the nuclear potential. The low-temperature, proton-ordered phase of water ice (namely, ice XI) is investigated. The net effect of a coupled anharmonic treatment of stretching modes is not just a rigid blue-shift of the respective harmonic spectral frequencies but rather a complex change of their relative spectral positions, which cannot be captured by simple scaling strategies based on harmonic calculations. The adopted techniques allow for a hierarchical treatment of anharmonic terms of the nuclear potential, which is key to an effective identification of leading factors. We show that the anharmonic independent-mode approximation─only describing the "intrinsic anharmonicity" of the O-H stretches─is unable to capture the correct physics, and that couplings among O-H stretches must be described. Inspection of harmonic normal coordinates allows identification of specific features of the O-H stretching motions which most likely enable strong mode-mode couplings. Finally, by coupling O-H stretches to all other possible modes of ice XI (THz collective vibrations, molecular librations, bendings), we identify specific types of motion which significantly affect O-H stretching states: in particular, molecular librations are found to affect the stretching states more than molecular bendings.
Collapse
Affiliation(s)
- Raymond G Schireman
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States of America
| | - Jefferson Maul
- Dipartimento di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Alessandro Erba
- Dipartimento di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Michael T Ruggiero
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States of America
| |
Collapse
|
3
|
Pedrielli A, Trevisanutto PE, Monacelli L, Garberoglio G, Pugno NM, Taioli S. Understanding anharmonic effects on hydrogen desorption characteristics of Mg nH 2n nanoclusters by ab initio trained deep neural network. NANOSCALE 2022; 14:5589-5599. [PMID: 35344577 DOI: 10.1039/d1nr08359g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnesium hydride (MgH2) has been widely studied for effective hydrogen storage. However, its bulk desorption temperature (553 K) is deemed too high for practical applications. Besides doping, a strategy to decrease such reaction energy for releasing hydrogen is the use of MgH2-based nanoparticles (NPs). Here, we investigate first the thermodynamic properties of MgnH2n NPs (n < 10) from first-principles, in particular by assessing the anharmonic effects on the enthalpy, entropy and thermal expansion by means of the stochastic self consistent harmonic approximation (SSCHA). This method goes beyond previous approaches, typically based on molecular mechanics and the quasi-harmonic approximation, allowing the ab initio calculation of the fully-anharmonic free energy. We find an almost linear dependence on temperature of the interatomic bond lengths - with a relative variation of few percent over 300 K - alongside with a bond distance decrease of the Mg-H bonds. In order to increase the size of MgnH2n NPs toward experiments of hydrogen desorption we devise a computationally effective machine learning model trained to accurately determine the forces and total energies (i.e. the potential energy surfaces), integrating the latter with the SSCHA model to fully include the anharmonic effects. We find a significative decrease of the H-desorption temperature for sub-nanometric clusters MgnH2n with n ≤ 10, with a non-negligible, although little effect due to anharmonicities (up to 10%).
Collapse
Affiliation(s)
- Andrea Pedrielli
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-Fondazione Bruno Kessler), Trento, Italy.
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy
| | - Paolo E Trevisanutto
- Dipartimento di Ingegneria, Unità di Ricerca di Fisica non lineare e Modelli matematici, Università Campus Bio-Medico, Via Alvaro del Portillo 21, Roma, 00154, Italy
| | | | - Giovanni Garberoglio
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-Fondazione Bruno Kessler), Trento, Italy.
- Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Italy
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Simone Taioli
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-Fondazione Bruno Kessler), Trento, Italy.
- Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Italy
| |
Collapse
|