1
|
Heully-Alary F, Pradines B, Suaud N, Guihéry N. Physical origin of the anisotropic exchange tensor close to the first-order spin-orbit coupling regime and impact of the electric field on its magnitude. J Chem Phys 2024; 161:054310. [PMID: 39105550 DOI: 10.1063/5.0218707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
This article follows earlier studies on the physical origin of magnetic anisotropy and the means of controlling it in polynuclear transition metal complexes. The difficulties encountered when focusing a magnetic field on a molecular object have led to consider the electric field as a more appropriate control tool. It is therefore fundamental to understand what governs the sensitivity of magnetic properties to the application of an electric field. We have already studied the impact of the electric field on the isotropic exchange coupling and on the Dzyaloshinskii-Moriya interaction (DMI). Here, we focus on the symmetric exchange anisotropy tensor. In order to obtain significant values of anisotropic interactions, we have carried out this study on a model complex that exhibits first-order spin-orbit coupling. We will show that (i) large values of the axial parameter of symmetric exchange can be reached when close to the first-order spin-orbit coupling regime, (ii) both correlated energies and wave functions must be used to achieve accurate values of the symmetric tensor components when the DMI is non-zero, and (iii) finally, an interferential effect between the DMI and the axial parameter of symmetric exchange occurs for a certain orientation of the electric field, i.e., the latter decreases in magnitude as the former increases. While DMI is often invoked as being involved in magneto-electric coupling, isotropic exchange and the symmetrical anisotropic tensor also contribute. Finally, we provide a recipe for generating significant anisotropic interactions and a significant change in magnetic properties under an electric field.
Collapse
Affiliation(s)
- Flaurent Heully-Alary
- Laboratoire de Chimie et Physique Quantiques, UMR5626, University of Toulouse 3, Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Barthélémy Pradines
- Laboratoire de Chimie et Physique Quantiques, UMR5626, University of Toulouse 3, Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique Quantiques, UMR5626, University of Toulouse 3, Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique Quantiques, UMR5626, University of Toulouse 3, Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
2
|
Sergentu DC, Le Guennic B, Maurice R. The resolution of the weak-exchange limit made rigorous, simple and general in binuclear complexes. Phys Chem Chem Phys 2024; 26:6844-6861. [PMID: 38328993 DOI: 10.1039/d3cp04943d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The correct interpretation of magnetic properties in the weak-exchange regime has remained a challenging task for several decades. In this regime, the effective exchange interaction between local spins is quite weak, of the same order of magnitude or smaller than the various anisotropic terms, which generates a complex set of levels characterized by spin mixing. Although the model multispin Hamiltonian in the absence of local orbital momentum, , is considered good enough to map the experimental energies at zero field and in the strong-exchange limit, theoretical works pointed out limitations of this simple model. This work revives the use of ĤMS from a new theoretical perspective, detailing point-by-point a strategy to correctly map the computational energies and wave functions onto ĤMS, thus validating it regardless of the exchange limit. We will distinguish two cases, based on experimentally characterized dicobalt(II) complexes from the literature. If centrosymmetry imposes alignment of the various rank-2 tensors constitutive of ĤMS in the first case, the absence of any symmetry element prevents such alignment in the second case. In such a context, the strategy provided herein becomes a powerful tool to rationalize the experimental magnetic data, since it is capable of fully and rigorously extracting the multispin model without any assumption on the orientation of its constitutive tensors. Furthermore, the strategy allows to question the use of the spin Hamiltonian approach by explicitly controlling the projection norms on the model space, which is showcased in the second complex where local orbital momentum could have occurred (distorted octahedra). Finally, previous theoretical data related to a known dinickel(II) complex is reinterpreted, clarifying initial wanderings regarding the weak exchange limit.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
- Laboratorul RA-03 (RECENT AIR), Universitatea Alexandru Ioan Cuza din Iaşi, 700506 Iaşi, Romania
- Facultatea de Chimie, Universitatea Alexandru Ioan Cuza din Iaşi, 700506 Iaşi, Romania
| | - Boris Le Guennic
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Rémi Maurice
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| |
Collapse
|
3
|
Maurice R, Mallah T, Guihéry N. Magnetism in Binuclear Compounds: Theoretical Insights. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2022_78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Pradines B, Cahier B, Suaud N, Guihéry N. Impact of the electric field on isotropic and anisotropic spin Hamiltonian parameters. J Chem Phys 2022; 157:204308. [DOI: 10.1063/5.0116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
One may obviously think that the best way to control magnetic properties relies on using a magnetic field. However, it is not convenient to focus a magnetic field on a small object, whereas it is much easier to do so with an electric field. Magnetoelectric coupling allows one to control the magnetization with the electric field and the polarization with the magnetic field and could therefore provide a solution to this problem. This paper aims at quantifying the impact of the electric field on both the isotropic magnetic exchange and the Dzyaloshinskii–Moriya interaction in the case of a binuclear system of S = 1/2 spins. This study follows previous studies that showed that very high Dzyaloshinskii–Moriya interaction, i.e., the antisymmetric exchange, can be generated when close to first order spin orbit coupling. We will, therefore, explore this regime in a model Cu(II) complex that exhibits a quasi-degeneracy of the [Formula: see text] and d xy orbitals. This situation is indeed the one that allows us to obtain the largest spin orbit couplings in transition metal complexes. We will show that both the magnetic exchange and the Dzyaloshinskii–Moriya interaction are very sensitive to the electric field and that it would therefore be possible to modulate and control magnetic properties by the electric field. Finally, rationalizations of the obtained results will be proposed.
Collapse
Affiliation(s)
- Barthélémy Pradines
- Laboratoire de Chimie et Physique Quantiques, UMR5626, University of Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Benjamin Cahier
- Laboratoire de Chimie et Physique Quantiques, UMR5626, University of Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique Quantiques, UMR5626, University of Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique Quantiques, UMR5626, University of Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
5
|
Bouammali MA, Suaud N, Guihéry N, Maurice R. Antisymmetric Exchange in a Real Copper Triangular Complex. Inorg Chem 2022; 61:12138-12148. [PMID: 35895313 DOI: 10.1021/acs.inorgchem.2c00939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antisymmetric exchange, also known as the Dzyaloshinskii-Moriya interaction (DMI), is an effective interaction that may be at play in isolated complexes (with transition metals or lanthanides, for instance), nanoparticles, and highly correlated materials with adequate symmetry properties. While many theoretical works have been devoted to the analysis of single-ion zero-field splitting and to a lesser extent to symmetric exchange, only a few ab initio studies deal with the DMI. Actually, it originates from a subtle interplay between weak electronic interactions and spin-orbit couplings. This article aims to highlight the origin of this interaction from theoretical grounds in a real tri-copper(II) complex, capitalizing on previous methodological studies on bi-copper(II) model complexes. By tackling this three-magnetic-center system, we will first show that the multispin model Hamiltonian is appropriate for trinuclear (and likely for higher nuclearity) complexes, then that the correct application of the permutation relationship is necessary to explain the outcomes of the ab initio calculations, and finally, that the model parameters extracted from a binuclear model transfer well to the trinuclear complex. For a more theory-oriented purpose, we will show that the use of a simplified structural model allows one to perform more demanding electronic structure calculations. On this simpler system, we will first check that the previous transferability is still valid, prior to performing more advanced calculations on the derived two-magnetic-center model system. To this end, we will explain in detail the physics of the DMI in the copper triangle of interest, before advocating further theory/experiment efforts.
Collapse
Affiliation(s)
- Mohammed-Amine Bouammali
- Laboratoire de Chimie et Physique Quantiques, UMR5626, Université de Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique Quantiques, UMR5626, Université de Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique Quantiques, UMR5626, Université de Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France.,Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, 35000 Rennes, France
| |
Collapse
|
6
|
Sánchez-Mansilla A, Sousa C, Kathir RK, Broer R, Straatsma TP, de Graaf C. On the role of dynamic electron correlation in non-orthogonal configuration interaction with fragments. Phys Chem Chem Phys 2022; 24:11931-11944. [PMID: 35521680 DOI: 10.1039/d2cp00772j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two different approaches have been implemented to include the effect of dynamic electron correlation in the Non-Orthogonal Configuration Interaction for Fragments (NOCI-F) method. The first is based on shifting the diagonal matrix elements of the NOCI matrix, while the second incorporates the dynamic correlation explicitly in the fragment wave functions used to construct the many-electron basis functions of the NOCI. The two approaches are illustrated for the calculation of the electronic coupling relevant in singlet fission and the coupling of spin moments in organic radicals. Comparison of the calculated diabatic couplings, the NOCI energies and wave functions shows that dynamic electron correlation is not only efficiently but also effectively incorporated by the shifting approach and can largely affect the coupling between electronic states. Also, it brings the NOCI coupling of the spin moments in close agreement with benchmark calculations.
Collapse
Affiliation(s)
- A Sánchez-Mansilla
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - C Sousa
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Spain.
| | - R K Kathir
- Zernike Institute of Advanced Materials, University of Groningen, The Netherlands
| | - R Broer
- Zernike Institute of Advanced Materials, University of Groningen, The Netherlands
| | - T P Straatsma
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373, USA.,Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - C de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain.,Zernike Institute of Advanced Materials, University of Groningen, The Netherlands.,ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
7
|
Wu D, Zhou C, Bao JJ, Gagliardi L, Truhlar DG. Zero-Field Splitting Calculations by Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2022; 18:2199-2207. [PMID: 35319874 DOI: 10.1021/acs.jctc.1c01115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zero-field splitting (ZFS) is a fundamental molecular property that is especially relevant for single-molecule magnets (SMMs), electron paramagnetic resonance spectra, and quantum computing. Developing a method that can accurately predict ZFS parameters can be very powerful for designing new SMMs. One of the challenges is to include external correlation in an inherently multiconfigurational open-shell species for the accurate prediction of magnetic properties. Previously available methods depend on expensive multireference perturbation theory calculations to include external correlation. In this paper, we present spin-orbit-inclusive multiconfiguration and multistate pair-density functional theory (MC-PDFT) calculations of ZFSs; these calculations have a cost comparable to complete-active-space self-consistent field (CASSCF) theory, but they include correlation external to the active space. We found that combining a multistate formulation of MC-PDFT, namely, compressed-state multistate pair-density functional theory, with orbitals optimized by weighted-state-averaged CASSCF, yields reasonably accurate ZFS results.
Collapse
Affiliation(s)
- Dihua Wu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Chen Zhou
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Jie J Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|