1
|
Drontschenko V, Ochsenfeld C. Low-Scaling, Efficient and Memory Optimized Computation of Nuclear Magnetic Resonance Shieldings within the Random Phase Approximation Using Cholesky-Decomposed Densities and an Attenuated Coulomb Metric. J Phys Chem A 2024; 128:7950-7965. [PMID: 39239944 PMCID: PMC11421095 DOI: 10.1021/acs.jpca.4c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
An efficient method for the computation of nuclear magnetic resonance (NMR) shielding tensors within the random phase approximation (RPA) is presented based on our recently introduced resolution-of-the-identity (RI) atomic orbital RPA NMR method [Drontschenko, V. J. Chem. Theory Comput. 2023, 19, 7542-7554] utilizing Cholesky decomposed density type matrices and employing an attenuated Coulomb RI metric. The introduced sparsity is efficiently exploited using sparse matrix algebra. This allows for an efficient and low-scaling computation of RPA NMR shielding tensors. Furthermore, we introduce a batching method for the computation of memory demanding intermediates that accounts for their sparsity. This extends the applicability of our method to even larger systems that would have been out of reach before, such as, e.g., a DNA strand with 260 atoms and 3408 atomic orbital basis functions.
Collapse
Affiliation(s)
- Viktoria Drontschenko
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
- Max
Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
2
|
Drontschenko V, Bangerter FH, Ochsenfeld C. Analytical Second-Order Properties for the Random Phase Approximation: Nuclear Magnetic Resonance Shieldings. J Chem Theory Comput 2023; 19:7542-7554. [PMID: 37863033 DOI: 10.1021/acs.jctc.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
A method for the analytical computation of nuclear magnetic resonance (NMR) shieldings within the direct random phase approximation (RPA) is presented. As a starting point, we use the RPA ground-state energy expression within the resolution-of-the-identity approximation in the atomic-orbital formalism. As has been shown in a recent benchmark study using numerical second derivatives [Glasbrenner, M. J. Chem. Theory Comput. 2022, 18, 192], RPA based on a Hartree-Fock reference shows accuracies comparable to coupled cluster singles and doubles (CCSD) for NMR chemical shieldings. Together with the much lower computational cost of RPA, it has emerged as an accurate method for the computation of NMR shieldings. Therefore, we aim to extend the applicability of RPA NMR to larger systems by introducing analytical second-order derivatives, making it a viable method for the accurate and efficient computation of NMR chemical shieldings.
Collapse
Affiliation(s)
- Viktoria Drontschenko
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Felix H Bangerter
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Wong J, Ganoe B, Liu X, Neudecker T, Lee J, Liang J, Wang Z, Li J, Rettig A, Head-Gordon T, Head-Gordon M. An in-silico NMR laboratory for nuclear magnetic shieldings computed via finite fields: Exploring nucleus-specific renormalizations of MP2 and MP3. J Chem Phys 2023; 158:164116. [PMID: 37114707 PMCID: PMC10148725 DOI: 10.1063/5.0145130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
We developed and implemented a method-independent, fully numerical, finite difference approach to calculating nuclear magnetic resonance shieldings, using gauge-including atomic orbitals. The resulting capability can be used to explore non-standard methods, given only the energy as a function of finite-applied magnetic fields and nuclear spins. For example, standard second-order Møller-Plesset theory (MP2) has well-known efficacy for 1H and 13C shieldings and known limitations for other nuclei such as 15N and 17O. It is, therefore, interesting to seek methods that offer good accuracy for 15N and 17O shieldings without greatly increased compute costs, as well as exploring whether such methods can further improve 1H and 13C shieldings. Using a small molecule test set of 28 species, we assessed two alternatives: κ regularized MP2 (κ-MP2), which provides energy-dependent damping of large amplitudes, and MP2.X, which includes a variable fraction, X, of third-order correlation (MP3). The aug-cc-pVTZ basis was used, and coupled cluster with singles and doubles and perturbative triples [CCSD(T)] results were taken as reference values. Our κ-MP2 results reveal significant improvements over MP2 for 13C and 15N, with the optimal κ value being element-specific. κ-MP2 with κ = 2 offers a 30% rms error reduction over MP2. For 15N, κ-MP2 with κ = 1.1 provides a 90% error reduction vs MP2 and a 60% error reduction vs CCSD. On the other hand, MP2.X with a scaling factor of 0.6 outperformed CCSD for all heavy nuclei. These results can be understood as providing renormalization of doubles amplitudes to partially account for neglected triple and higher substitutions and offer promising opportunities for future applications.
Collapse
Affiliation(s)
- Jonathan Wong
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Brad Ganoe
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Xiao Liu
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tim Neudecker
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Joonho Lee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jiashu Liang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zhe Wang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jie Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Adam Rettig
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
4
|
Spadetto E, Philipsen PHT, Förster A, Visscher L. Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy. J Chem Theory Comput 2023; 19:1499-1516. [PMID: 36787494 PMCID: PMC10018742 DOI: 10.1021/acs.jctc.2c01201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 02/16/2023]
Abstract
Pair atomic density fitting (PADF) has been identified as a promising strategy to reduce the scaling with system size of quantum chemical methods for the calculation of the correlation energy like the direct random-phase approximation (RPA) or second-order Møller-Plesset perturbation theory (MP2). PADF can however introduce large errors in correlation energies as the two-electron interaction energy is not guaranteed to be bounded from below. This issue can be partially alleviated by using very large fit sets, but this comes at the price of reduced efficiency and having to deal with near-linear dependencies in the fit set. One posibility is to use global density fitting (DF), but in this work, we introduce an alternative methodology to overcome this problem that preserves the intrinsically favorable scaling of PADF. We first regularize the Fock matrix by projecting out parts of the basis set which gives rise to orbital products that are hard to describe by PADF. After having thus obtained a reliable self-consistent field solution, we then also apply this projector to the orbital coefficient matrix to improve the precision of PADF-MP2 and PADF-RPA. We systematically assess the accuracy of this new approach in a numerical atomic orbital framework using Slater type orbitals (STO) and correlation consistent Gaussian type basis sets up to quintuple-ζ quality for systems with more than 200 atoms. For the small and medium systems in the S66 database we show the maximum deviation of PADF-MP2 and PADF-RPA relative correlation energies to DF-MP2 and DF-RPA reference results to be 0.07 and 0.14 kcal/mol, respectively. When the new projector method is used, the errors only slightly increase for large molecules and also when moderately sized fit sets are used the resulting errors are well under control. Finally, we demonstrate the computational efficiency of our algorithm by calculating the interaction energies of large, non-covalently bound complexes with more than 1000 atoms and 20000 atomic orbitals at the RPA@PBE/CC-pVTZ level of theory.
Collapse
Affiliation(s)
- Edoardo Spadetto
- Software
for Chemistry and Materials NV, NL-1081HV Amsterdam, The Netherlands
| | | | - Arno Förster
- Software
for Chemistry and Materials NV, NL-1081HV Amsterdam, The Netherlands
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Bangerter F, Glasbrenner M, Ochsenfeld C. Tensor-Hypercontracted MP2 First Derivatives: Runtime and Memory Efficient Computation of Hyperfine Coupling Constants. J Chem Theory Comput 2022; 18:5233-5245. [PMID: 35943450 PMCID: PMC9476664 DOI: 10.1021/acs.jctc.2c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We employ our recently introduced tensor-hypercontracted (THC) second-order Møller-Plesset perturbation theory (MP2) method [Bangerter, F. H., Glasbrenner, M., Ochsenfeld, C. J. Chem. Theory Comput. 2021, 17, 211-221] for the computation of hyperfine coupling constants (HFCCs). The implementation leverages the tensor structure of the THC factorized electron repulsion integrals for an efficient formation of the integral-based intermediates. The computational complexity of the most expensive and formally quintic scaling exchange-like contribution is reduced to effectively subquadratic, by making use of the intrinsic, exponentially decaying coupling between tensor indices through screening based on natural blocking. Overall, this yields an effective subquadratic scaling with a low prefactor for the presented THC-based AO-MP2 method for the computation of isotropic HFCCs on DNA fragments with up to 500 atoms and 5000 basis functions. Furthermore, the implementation achieves considerable speedups with up to a factor of roughly 600-1000 compared to previous implementations [Vogler, S., Ludwig, M., Maurer, M., Ochsenfeld, C. J. Chem. Phys. 2017, 147, 024101] for medium-sized organic radicals, while also significantly reducing storage requirements.
Collapse
Affiliation(s)
- Felix
H. Bangerter
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Michael Glasbrenner
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany,Max
Planck Institute for Solid State Research, D-70569 Stuttgart, Germany,
| |
Collapse
|
6
|
Yan W, Xu X. Accurate Prediction of Nuclear Magnetic Resonance Parameters via the XYG3 Type of Doubly Hybrid Density Functionals. J Chem Theory Comput 2022; 18:2931-2946. [PMID: 35467852 DOI: 10.1021/acs.jctc.2c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and versatile tools in elucidating molecular structures. To eliminate ambiguities of experimental assignments, accurate calculations of NMR spectra are of great importance. Here, a method for theoretical evaluation of the NMR shielding constants by analytic derivatives using gauge including atomic orbitals (GIAO) has been implemented for the XYG3 type of doubly hybrid density functionals (xDH), namely, the GIAO-xDH method. Benchmark calculations on shielding constants and chemical shifts demonstrate the remarkable accuracy of the GIAO-xDH method, compared to the accurate CCSD(T) references. It is shown here that the XYGJ-OS functional is able to give a mean absolute deviation (MAD) of ∼3.0 ppm in the calculated shielding constants for 13C, 15N, 17O, 19F, while both XYGJ-OS and xDH-PBE0 functionals are able to provide a satisfactory estimation of chemical shifts with MADs of ∼0.03 and 1.0 ppm for 1H and 13C, respectively. The basis set influence upon the method has been examined and a computational scheme considering both accuracy and efficiency has been proposed and tested to predict the experimental 13C chemical shifts of five medium-sized natural product molecules, yielding a MAD of ∼1.0 ppm, which demonstrates the practical feasibility of the GIAO-xDH method.
Collapse
Affiliation(s)
- Wenjie Yan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
7
|
Blaschke S, Stopkowicz S. Cholesky decomposition of complex two-electron integrals over GIAOs: Efficient MP2 computations for large molecules in strong magnetic fields. J Chem Phys 2022; 156:044115. [DOI: 10.1063/5.0076588] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Simon Blaschke
- Department Chemie, Johannes Gutenberg-Unversität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Stella Stopkowicz
- Department Chemie, Johannes Gutenberg-Unversität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|