1
|
Fatina C, Yu J, Richert R, Yu L. Structural Evolution in a Glass-Forming Liquid Alcohol by X-Ray Scattering: Contrasting Behaviors of Main Peak and Prepeak Structures. J Phys Chem B 2025. [PMID: 40008678 DOI: 10.1021/acs.jpcb.4c06822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
X-ray scattering of liquid 2-ethyl-1-hexanol (2E1H) has been measured from its liquid state to its glassy state with focus on the main scattering peak and the prepeak. The main peak, associated with the packing of the alkyl chains, shifts to higher angle and sharpens in a manner consistent with closely packed spheres, until kinetic arrest at the glass transition temperature Tg (146 K). In contrast, the prepeak, associated with the correlation of the hydroxyl groups separated by the hydrocarbon chains, shows a transition near 220 K, below which its width is nearly frozen and insensitive to the passage of Tg. This transition coincides with a similar transition in the Kirkwood factor gK which reports the orientational correlation of the OH dipoles, and with the transition reported previously as the "250 K anomaly" based on other observables. This transition arises from the increased hydrogen bonding between the hydroxyl groups and the resulting improvement of the regularity of the alcohol bilayers.
Collapse
Affiliation(s)
- Caroline Fatina
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
2
|
Gromnitskaya EL, Danilov IV, Brazhkin VV. Polyhydric alcohols under high pressure: comparative ultrasonic study of elastic properties. Phys Chem Chem Phys 2024. [PMID: 39585248 DOI: 10.1039/d4cp03667k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We carried out an experimental ultrasonic study of polyhydric alcohols with the general chemical formula CnHn+2(OH)n with an increasing number of OH groups: glycerol (n = 3), erythritol (n = 4), xylitol (n = 5), sorbitol (n = 6). The baric and temperature dependences of the elastic characteristics of these substances in the crystalline and glassy states were studied both under isothermal compression up to 1 GPa and during the isobaric heating of 77-295 K. For glycerol, glasses were obtained at different cooling rates, glass-liquid transitions were studied at different pressures. All the studied glasses have lower elastic moduli than the same substances in the crystalline state at the same pressure-temperature conditions. We obtained a cascade of glass-supercooled liquid-crystal transitions during heating of glassy erythritol. In the series of substances with n = 3, 4, 5 the bulk moduli show a tendency to decrease with increasing n. However, sorbitol (n = 6) unexpectedly has the highest elastic moduli among the studied substances in both the glassy and crystalline states. The studied glassformers show a general tendency to increase the glass transition temperature Tg and the fragility coefficient m with increasing n.
Collapse
Affiliation(s)
- Elena L Gromnitskaya
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, 108840 Moscow, Russia.
| | - Igor V Danilov
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, 108840 Moscow, Russia.
| | - Vadim V Brazhkin
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, 108840 Moscow, Russia.
| |
Collapse
|
3
|
Nica MA, Anuța V, Nicolae CA, Popa L, Ghica MV, Cocoș FI, Dinu-Pîrvu CE. Exploring Deep Eutectic Solvents as Pharmaceutical Excipients: Enhancing the Solubility of Ibuprofen and Mefenamic Acid. Pharmaceuticals (Basel) 2024; 17:1316. [PMID: 39458957 PMCID: PMC11510164 DOI: 10.3390/ph17101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The study explores the potential of various deep eutectic solvents (DESs) to serve as drug delivery systems and pharmaceutical excipients. The research focuses on two primary objectives: evaluating the ability of the selected DES systems to enhance the solubility of two poorly water-soluble model drugs (IBU and MFA), and evaluating their physicochemical properties, including density, viscosity, flow behavior, surface tension, thermal stability, and water dilution effects, to determine their suitability for pharmaceutical applications. Methods: A range of DES systems containing pharmaceutically acceptable constituents was explored, encompassing organic acid-based, sugar- and sugar alcohol-based, and hydrophobic systems, as well as menthol (MNT)-based DES systems with common pharmaceutical excipients. MNT-based DESs exhibited the most significant solubility enhancements. Results: IBU solubility reached 379.69 mg/g in MNT: PEG 400 (1:1) and 356.3 mg/g in MNT:oleic acid (1:1), while MFA solubility peaked at 17.07 mg/g in MNT:Miglyol 812®N (1:1). In contrast, solubility in hydrophilic DES systems was significantly lower, with choline chloride: glycerol (1:2) and arginine: glycolic acid (1:8) showing the best results. While demonstrating lower solubility compared to the MNT-based systems, sugar-based DESs exhibited increased tunability via water and glycerol addition both in terms of solubility and physicochemical properties, such as viscosity and surface tension. Conclusions: Our study introduces novel DES systems, expanding the repertoire of pharmaceutically acceptable DES formulations and opening new avenues for the rational design of tailored solvent systems to overcome solubility challenges and enhance drug delivery.
Collapse
Affiliation(s)
- Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
4
|
Chen Z, Nie H, Benmore CJ, Smith PA, Du Y, Byrn S, Templeton AC, Su Y. Probing Molecular Packing of Amorphous Pharmaceutical Solids Using X-ray Atomic Pair Distribution Function and Solid-State NMR. Mol Pharm 2023; 20:5763-5777. [PMID: 37800667 DOI: 10.1021/acs.molpharmaceut.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The structural investigation of amorphous pharmaceuticals is of paramount importance in comprehending their physicochemical stability. However, it has remained a relatively underexplored realm primarily due to the limited availability of high-resolution analytical tools. In this study, we utilized the combined power of X-ray pair distribution functions (PDFs) and solid-state nuclear magnetic resonance (ssNMR) techniques to probe the molecular packing of amorphous posaconazole and its amorphous solid dispersion at the molecular level. Leveraging synchrotron X-ray PDF data and employing the empirical potential structure refinement (EPSR) methodology, we unraveled the existence of a rigid conformation and discerned short-range intermolecular C-F contacts within amorphous posaconazole. Encouragingly, our ssNMR 19F-13C distance measurements offered corroborative evidence supporting these findings. Furthermore, employing principal component analysis on the X-ray PDF and ssNMR data sets enabled us to gain invaluable insights into the chemical nature of the intermolecular interactions governing the drug-polymer interplay. These outcomes not only furnish crucial structural insights facilitating the comprehension of the underlying mechanisms governing the physicochemical stability but also underscore the efficacy of synergistically harnessing X-ray PDF and ssNMR techniques, complemented by robust modeling strategies, to achieve a high-resolution exploration of amorphous structures.
Collapse
Affiliation(s)
- Zhenxuan Chen
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chris J Benmore
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pamela A Smith
- Improved Pharma, West Lafayette, Indiana 47906, United States
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephen Byrn
- Improved Pharma, West Lafayette, Indiana 47906, United States
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
5
|
Filianina M, Bin M, Berkowicz S, Reiser M, Li H, Timmermann S, Blankenburg M, Amann-Winkel K, Gutt C, Perakis F. Nanocrystallites Modulate Intermolecular Interactions in Cryoprotected Protein Solutions. J Phys Chem B 2023. [PMID: 37399586 DOI: 10.1021/acs.jpcb.3c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Studying protein interactions at low temperatures has important implications for optimizing cryostorage processes of biological tissue, food, and protein-based drugs. One of the major issues is related to the formation of ice nanocrystals, which can occur even in the presence of cryoprotectants and can lead to protein denaturation. The presence of ice nanocrystals in protein solutions poses several challenges since, contrary to microscopic ice crystals, they can be difficult to resolve and can complicate the interpretation of experimental data. Here, using a combination of small- and wide-angle X-ray scattering (SAXS and WAXS), we investigate the structural evolution of concentrated lysozyme solutions in a cryoprotected glycerol-water mixture from room temperature (T = 300 K) down to cryogenic temperatures (T = 195 K). Upon cooling, we observe a transition near the melting temperature of the solution (T ≈ 245 K), which manifests both in the temperature dependence of the scattering intensity peak position reflecting protein-protein length scales (SAXS) and the interatomic distances within the solvent (WAXS). Upon thermal cycling, a hysteresis is observed in the scattering intensity, which is attributed to the formation of nanocrystallites in the order of 10 nm. The experimental data are well described by the two-Yukawa model, which indicates temperature-dependent changes in the short-range attraction of the protein-protein interaction potential. Our results demonstrate that the nanocrystal growth yields effectively stronger protein-protein attraction and influences the protein pair distribution function beyond the first coordination shell.
Collapse
Affiliation(s)
- Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Hailong Li
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
- Max Plank Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sonja Timmermann
- Department of Physics, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Malte Blankenburg
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
- Max Plank Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Christian Gutt
- Department of Physics, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Böhmer T, Gabriel JP, Zeißler R, Richter T, Blochowicz T. Glassy dynamics in polyalcohols: intermolecular simplicity vs. intramolecular complexity. Phys Chem Chem Phys 2022; 24:18272-18280. [PMID: 35880532 DOI: 10.1039/d2cp01969h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using depolarized light scattering, we have recently shown that structural relaxation in a broad range of supercooled liquids follows, to good approximation, a generic line shape with high-frequency power law ω-1/2. We now continue this study by investigating a systematic series of polyalcohols (PAs), frequently used as model-systems in glass-science, i.a., because the width of their respective dielectric loss spectra varies strongly along the series. Our results reveal that the microscopic origin of the observed relaxation behavior varies significantly between different PAs: while short-chained PAs like glycerol rotate as more or less rigid entities and their light scattering spectra follow the generic shape, long-chained PAs like sorbitol display pronounced intramolecular dynamic contributions on the time scale of structural relaxation, leading to systematic deviations from the generic shape. Based on these findings we discuss an important limitation for observing the generic shape in a supercooled liquid: the dynamics that is probed needs to reflect the intermolecular dynamic heterogeneity, and must not be superimposed by effects of intramolecular dynamic heterogeneity.
Collapse
Affiliation(s)
- Till Böhmer
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| | - Jan Philipp Gabriel
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rolf Zeißler
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| | - Timo Richter
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| | - Thomas Blochowicz
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| |
Collapse
|