1
|
Guéneau M, Majumdar SN, Schehr G. Run-and-tumble particle in one-dimensional potentials: Mean first-passage time and applications. Phys Rev E 2025; 111:014144. [PMID: 39972792 DOI: 10.1103/physreve.111.014144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
We study a one-dimensional run-and-tumble particle (RTP), which is a prototypical model for active systems, moving within an arbitrary external potential. Using backward Fokker-Planck equations, we derive the differential equation satisfied by its mean first-passage time (MFPT) to an absorbing target, which, without any loss of generality, is placed at the origin. Depending on the shape of the potential, we identify four distinct "phases," with a corresponding expression for the MFPT in every case, which we derive explicitly. To illustrate these general expressions, we derive explicit formulas for two specific cases which we study in detail: a double-well potential and a logarithmic potential. We then present different applications of these general formulas to (1) the generalization of the Kramers escape law for an RTP in the presence of a potential barrier, (2) the "trapping" time of an RTP moving in a harmonic well, and (3) characterizing the efficiency of the optimal search strategy of an RTP subjected to stochastic resetting. Our results reveal that the MFPT of an RTP in an external potential exhibits a far more complex and, at times, counterintuitive behavior compared to that of a passive particle (e.g., Brownian) in the same potential.
Collapse
Affiliation(s)
- Mathis Guéneau
- Laboratoire de Physique Théorique et Hautes Energies, Sorbonne Université, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Satya N Majumdar
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Grégory Schehr
- Laboratoire de Physique Théorique et Hautes Energies, Sorbonne Université, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
2
|
Tang B, Gao JC, Chen K, Zhang TH, Tian WD. Escape of an active ring from an attractive surface: Behaving like a self-propelled Brownian particle. Phys Rev E 2024; 110:034609. [PMID: 39425371 DOI: 10.1103/physreve.110.034609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024]
Abstract
Escape of active agents from metastable states is of great interest in statistical and biological physics. In this paper, we investigate the escape of a flexible active ring, composed of active Brownian particles, from a flat attractive surface using Brownian dynamics simulations. To systematically explore the effects of activity, persistence time, and the shape of attractive potentials, we calculate escape time τ_{e} and effective temperature T_{eff}. We observe two distinct escape mechanisms: Kramers-like thermal activation at small persistence times, where ln(τ_{e})∼1/(k_{B}T_{eff}), and the maximal force problem at large persistence time, where τ_{e} is determined by persistence time. The escape time explicitly depends on the shape of the potential barrier at high activity and large persistence time. Moreover, when the propulsion force is biased along the ring's contour, escape becomes more difficult and is primarily driven by thermal noise. Our findings highlight that, despite its intricate configuration, the active ring can be effectively modeled as a self-propelled Brownian particle when studying its escape from a smooth surface.
Collapse
|
3
|
Semeraro M, Suma A, Negro G. Fluctuation Theorems for Heat Exchanges between Passive and Active Baths. ENTROPY (BASEL, SWITZERLAND) 2024; 26:439. [PMID: 38920448 PMCID: PMC11203073 DOI: 10.3390/e26060439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
In addition to providing general constraints on probability distributions, fluctuation theorems allow us to infer essential information on the role played by temperature in heat exchange phenomena. In this numerical study, we measure the temperature of an out-of-equilibrium active bath using a fluctuation theorem that relates the fluctuations in the heat exchanged between two baths to their temperatures. Our setup consists of a single particle moving between two wells of a quartic potential accommodating two different baths. The heat exchanged between the two baths is monitored according to two definitions: as the kinetic energy carried by the particle whenever it jumps from one well to the other and as the work performed by the particle on one of the two baths when immersed in it. First, we consider two equilibrium baths at two different temperatures and verify that a fluctuation theorem featuring the baths temperatures holds for both heat definitions. Then, we introduce an additional Gaussian coloured noise in one of the baths, so as to make it effectively an active (out-of-equilibrium) bath. We find that a fluctuation theorem is still satisfied with both heat definitions. Interestingly, in this case the temperature obtained through the fluctuation theorem for the active bath corresponds to the kinetic temperature when considering the first heat definition, while it is larger with the second one. We interpret these results by looking at the particle jump phenomenology.
Collapse
Affiliation(s)
- Massimiliano Semeraro
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, Italy; (A.S.); (G.N.)
| | | | | |
Collapse
|
4
|
Angelani L. Optimal escapes in active matter. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:9. [PMID: 38281233 PMCID: PMC11222286 DOI: 10.1140/epje/s10189-023-00402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
The out-of-equilibrium character of active particles, responsible for accumulation at boundaries in confining domains, determines not-trivial effects when considering escape processes. Non-monotonous behavior of exit times with respect to tumbling rate (inverse of mean persistent time) appears, as a consequence of the competing processes of exploring the bulk and accumulate at boundaries. By using both 1D analytical results and 2D numerical simulations of run-and-tumble particles with different behaviours at boundaries, we scrutinize this very general phenomenon of active matter, evidencing the role of accumulation at walls for the existence of optimal tumbling rates for fast escapes.
Collapse
Affiliation(s)
- Luca Angelani
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale A. Moro 2, I-00185, Roma, Italy.
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, I-00185, Roma, Italy.
| |
Collapse
|
5
|
Chugh A, Ganesh R. Role of translational noise on current reversals of active particles on ratchet. Sci Rep 2023; 13:16154. [PMID: 37758752 PMCID: PMC10533559 DOI: 10.1038/s41598-023-42066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, we explore using Langevin dynamics simulations, the role of thermal fluctuations on the rectification of non-interacting inertial active (self-propelled) particles in a rocking ratchet setup in the absence and in the presence of the external time periodic drive. The system is first studied in the absence of the external drive. It is found that the average velocity is always positive and a peaked function of the translational noise, indicating that the asymmetry effects dominate at intermediate values of the strength of the thermal noise. In the second part of this work, we study the effect of the external drive on the dynamics of the system by exploring a phase diagram in the parameter space of translational noise and driving frequency for two different strengths of rotational diffusion. For a given constant amplitude of the active force and amplitude of external drive less than the maximum force due to the potential, the average velocity magnitude as well as the direction ([Formula: see text]) is found to depend on the rotational diffusion, frequency of the external drive and the strength of the translational noise. We discover certain critical parameters in the phase space at which current reversals happen. It is found that when the average particle energy is lower than the potential energy of the barrier, symmetry breaking dominates and the currents are in the 'easy' direction of the ratchet. On the other hand, when the energy available per particle crosses the potential energy of the barrier, the competition between inertial effects and diffusion effects decides the direction of currents. We explain our findings by constructing phase difference datum, velocity probability distribution, and current probability analyses. Our results provide a novel method for controlling the direction of transport of inertial active particles.
Collapse
Affiliation(s)
- Anshika Chugh
- Institute for Plasma Research, Bhat, Gandhinagar, 382428, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Rajaraman Ganesh
- Institute for Plasma Research, Bhat, Gandhinagar, 382428, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
6
|
Kumar P, Chakrabarti R. Escape dynamics of a self-propelled nanorod from circular confinements with narrow openings. SOFT MATTER 2023; 19:6743-6753. [PMID: 37623699 DOI: 10.1039/d3sm00723e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
We perform computer simulations to explore the escape dynamics of a self-propelled (active) nanorod from circular confinements with narrow opening(s). Our results clearly demonstrate how the persistent and directed motion of the nanorod helps it to escape. Such escape events are absent if the nanorod is passive. To quantify the escape dynamics, we compute the radial probability density function (RPDF) and mean first escape time (MFET) and show how the activity is responsible for the bimodality of RPDF, which is clearly absent if the nanorod is passive. Broadening of displacement distributions with activity has also been observed. The computed mean first escape time decreases with activity. In contrast, the fluctuations of the first escape times vary in a non-monotonic way. This results in high values of the coefficient of variation and indicates the presence of multiple timescales in first escape time distributions and multimodality in uniformity index distributions. We hope our study will help in differentiating activity-driven escape dynamics from purely thermal passive diffusion in confinement.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
7
|
Dutta S. Most probable paths for active Ornstein-Uhlenbeck particles. Phys Rev E 2023; 107:054130. [PMID: 37329007 DOI: 10.1103/physreve.107.054130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Fluctuations play an important role in the dynamics of stochastic systems. In particular, for small systems, the most probable thermodynamic quantities differ from their averages because of the fluctuations. Using the Onsager Machlup variational formalism we analyze the most probable paths for nonequilibrium systems, in particular, active Ornstein-Uhlenbeck particles, and investigate how the entropy production along these paths differs from the average entropy production. We investigate how much information about their nonequilibrium nature can be obtained from their extremum paths and how these paths depend on the persistence time and their swim velocities. We also look at how the entropy production along the most probable paths varies with the active noise and how it differs from the average entropy production. This study would be useful to design artificial active systems with certain target trajectories.
Collapse
Affiliation(s)
- Sandipan Dutta
- Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
8
|
Sprenger AR, Caprini L, Löwen H, Wittmann R. Dynamics of active particles with translational and rotational inertia. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305101. [PMID: 37059111 DOI: 10.1088/1361-648x/accd36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Inertial effects affecting both the translational and rotational dynamics are inherent to a broad range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models in the framework of active matter to correctly reproduce experimental results, hopefully achieving theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to capture the basic features of the well-established inertial active Brownian particle model, i.e. the persistence time of the active motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these two models predict similar dynamics at all timescales and, in general, our inertial AOUP model consistently yields the same trend upon changing the moment of inertia for various dynamical correlation functions.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Feng GQ, Tian WD. Desorption of a Flexible Polymer with Activity from a Homogeneous Attractive Surface. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Guo-qiang Feng
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
10
|
Crisanti A, Paoluzzi M. Most probable path of active Ornstein-Uhlenbeck particles. Phys Rev E 2023; 107:034110. [PMID: 37072947 DOI: 10.1103/physreve.107.034110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 04/20/2023]
Abstract
Using the path integral representation of the nonequilibrium dynamics, we compute the most probable path between arbitrary starting and final points that is followed by an active particle driven by persistent noise. We focus our attention on the case of active particles immersed in harmonic potentials, where the trajectory can be computed analytically. Once we consider the extended Markovian dynamics where the self-propulsive drive evolves according to an Ornstein-Uhlenbeck process, we can compute the trajectory analytically with arbitrary conditions on position and self-propulsion velocity. We test the analytical predictions against numerical simulations and we compare the analytical results with those obtained within approximated equilibriumlike dynamics.
Collapse
Affiliation(s)
- Andrea Crisanti
- Dipartimento di Fisica, Sapienza Università di Roma Piazzale A. Moro 2, I-00185 Rome, Italy
| | - Matteo Paoluzzi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Schwarzendahl FJ, Löwen H. Anomalous Cooling and Overcooling of Active Colloids. PHYSICAL REVIEW LETTERS 2022; 129:138002. [PMID: 36206411 DOI: 10.1103/physrevlett.129.138002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The phenomenon that a system at a hot temperature cools faster than at a warm temperature, referred to as the Mpemba effect, has recently been realized for trapped colloids. Here, we investigate the cooling and heating process of a self-propelled active colloid using numerical simulations and theoretical calculations with a model that can be directly tested in experiments. Upon cooling, activity induces a Mpemba effect and the active particle transiently escapes an effective temperature description. At the end of the cooling process the notion of temperature is recovered and the system can exhibit even smaller temperatures than its final temperature, a surprising phenomenon which we refer to as activity-induced overcooling.
Collapse
Affiliation(s)
- Fabian Jan Schwarzendahl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Kumar P, Theeyancheri L, Chakrabarti R. Chemically symmetric and asymmetric self-driven rigid dumbbells in a 2D polymer gel. SOFT MATTER 2022; 18:2663-2671. [PMID: 35311848 DOI: 10.1039/d1sm01820e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ computer simulations to unveil the translational and rotational dynamics of self-driven chemically symmetric and asymmetric rigid dumbbells in a two-dimensional polymer gel. Our results show that the activity or the self-propulsion always enhances the dynamics of the dumbbells. Making the self-propelled dumbbell chemically asymmetric leads to further enhancement in dynamics. Additionally, the direction of self-propulsion is a key factor for chemically asymmetric dumbbells, where self-propulsion towards the non-sticky half of the dumbbell results in faster translational and rotational dynamics compared to the case with the self-propulsion towards the sticky half of the dumbbell. Our analyses show that both the symmetric and asymmetric passive rigid dumbbells get trapped inside the mesh of the polymer gel, but the chemical asymmetry always facilitates the mesh to mesh motion of the dumbbell and it is even more pronounced when the dumbbell is self-propelled. This results in multiple peaks in the van Hove function with increasing self-propulsion. In a nutshell, we believe that our in silico study can guide researchers to design efficient artificial microswimmers possessing potential applications in site-specific delivery.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
13
|
Breoni D, Blossey R, Löwen H. Brownian particles driven by spatially periodic noise. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:18. [PMID: 35230521 PMCID: PMC8888531 DOI: 10.1140/epje/s10189-022-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/18/2022] [Indexed: 05/07/2023]
Abstract
We discuss the dynamics of a Brownian particle under the influence of a spatially periodic noise strength in one dimension using analytical theory and computer simulations. In the absence of a deterministic force, the Langevin equation can be integrated formally exactly. We determine the short- and long-time behaviour of the mean displacement (MD) and mean-squared displacement (MSD). In particular, we find a very slow dynamics for the mean displacement, scaling as [Formula: see text] with time t. Placed under an additional external periodic force near the critical tilt value we compute the stationary current obtained from the corresponding Fokker-Planck equation and identify an essential singularity if the minimum of the noise strength is zero. Finally, in order to further elucidate the effect of the random periodic driving on the diffusion process, we introduce a phase factor in the spatial noise with respect to the external periodic force and identify the value of the phase shift for which the random force exerts its strongest effect on the long-time drift velocity and diffusion coefficient.
Collapse
Affiliation(s)
- Davide Breoni
- Institut für Theoretische Physik II: Weiche Materie, Heinrich, Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Ralf Blossey
- University of Lille, UGSF CNRS UMR8576, 59000, Lille, France
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich, Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|