1
|
Horio T, Nishizato T, Suzuki Y, Matsumoto K, Terasaki A. Anion photoelectron velocity-map imaging using a tunable laser at a 100 kHz repetition rate. J Chem Phys 2025; 162:026101. [PMID: 39791496 DOI: 10.1063/5.0245252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
We present velocity-map imaging (VMI) of photoelectrons detached from anions using an optical parametric amplifier operating at a repetition rate as high as 100 kHz. The light source generates femtosecond (fs) laser pulses tunable from near-infrared to ultraviolet (310-2600 nm), which interact synchronously with mass-selected anion bunches. We demonstrate this technique by measuring two-dimensional projections of photoelectrons ejected from silver trimer anions, Ag3-, across a photon energy range from 2.43 to 4.00 eV (509-310 nm), with an average power of 50-300 mW. This high-repetition-rate VMI setup allows rapid data acquisition of photoelectron spectra and laboratory-frame photoelectron angular distributions of anions at various photon energies, facilitating investigation of their electronic and geometric structures. Taking advantage of the fs pulses, this approach will also enable time-resolved photoelectron imaging for tracking electronic and nuclear dynamics of anions with high efficiency.
Collapse
Affiliation(s)
- Takuya Horio
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tasuku Nishizato
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Suzuki
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuaki Matsumoto
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Terasaki
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Liu XX, Li ZY, Liu QY, Zhao XG, Li Q, He SG. Reactivity of Polynuclear Niobium Oxynitride Cluster Anions Nb 4N 5-xO x - (x=0-5) toward N 2. Chemistry 2024; 30:e202402695. [PMID: 39404653 DOI: 10.1002/chem.202402695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 11/09/2024]
Abstract
The activation of N₂ under mild conditions remains a significant challenge in chemistry. Understanding how the composition of ligands modulates the reactivity of metal centers is pivotal for the rational design of efficient catalysts for nitrogen fixation. Herein, the reactions between polynuclear niobium oxynitride anions Nb4N5-xOx - (x=0-5) and N2 were investigated by employing mass spectrometry, photoelectron imaging spectroscopy, and theoretical calculations. The rate constants of Nb4N5-xOx -/N2 gradually decrease for x=0 to x=4, and then increase again for x=5. The sharp increase of the rate constants of Nb4O5 -/N2 corresponds to a decrease in the electron detachment energy of the Nb4O5 - cluster in the photoelectron spectroscopic experiments. Theoretical calculations suggest that the low-coordinated Nb-Nb sites in Nb4N5-xOx - (x=0-5) behaves as the active centers to bind N2 in the side-on/end-on manner. Mechanistic analysis reveals that reducing the N/O ratio leads to higher electron densities on the active Nb-Nb centers and decreased positive charge on the metal atoms, which hinders the approach of N2 to the clusters. This finding discloses fundamental insights into the impact of N/O ratio in fine-tuning the reactivity of metal centers toward N2 adsorption in related catalytic processes.
Collapse
Affiliation(s)
- Xiao-Xiao Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, China
| | - Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, China
| | - Qian Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Yuan RN, Chen JJ, Chen Q, Zhang QW, Niu H, Wei R, Wei ZH, Li XN, Li SD. Observation of Aromatic B 13(CO) n+ ( n = 1-7) as Boron Carbonyl Analogs of Benzene. J Am Chem Soc 2024; 146:31464-31471. [PMID: 39508261 DOI: 10.1021/jacs.4c07680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
CO as a typical σ-donor is one of the most important ligands in chemistry, while planar B13+ is experimentally known as the most prominent magic-number boron cluster analogous to benzene. Joint gas-phase mass spectroscopy, collision-induced dissociation, and first-principles theory investigations performed herein indicate that B13+ reacts with CO successively under ambient conditions to form a series of boron carbonyl complexes B13(CO)n+ up to n = 7, presenting the largest boron carbonyl complexes observed to date with a quasi-planar B13+ core at the center coordinated by nCO ligands around it. Extensive theoretical analyses unveil both the chemisorption pathways and bonding patterns of these aromatic B13(CO)n+ monocations which, with three delocalized π bonds well-retained over the slightly wrinkled B13+ moiety, all prove to be boron carbonyl analogs of benzene tentatively named as boron carbonyl aromatics (BCAs). Their π-isovalent B12(CO)n (n = 1-6) complexes with a quasi-planar B12 coordination center are predicted to be stable neutral BCAs.
Collapse
Affiliation(s)
- Rui-Nan Yuan
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Jiao-Jiao Chen
- School of Mathematics and Physics, North China Electric Power University, Beijing 102206, P. R. China
| | - Qiang Chen
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Qin-Wei Zhang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Hong Niu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Rui Wei
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhi-Hong Wei
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Si-Dian Li
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
4
|
Jain S, Danovich D, Shaik S. Dinitrogen Activation within Frustrated Lewis Pairs Is Promoted by Adding External Electric Fields. J Phys Chem A 2024; 128:4595-4604. [PMID: 38775015 DOI: 10.1021/acs.jpca.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This study uses computational means to explore the feasibility of N2 cleavage by frustrated Lewis pair (FLPs) species. The employed FLP systems are phosphane/borane (1) and carbene/borane (2). Previous studies show that 1 and 2 react with H2 and CO2 but do not activate N2. The present study demonstrates that N2 is indeed inert, and its activation requires augmentation of the FLPs by an external tool. As we demonstrate here, FLP-mediated N2 activation can be achieved by an external electric field oriented along the reaction axis of the FLP. Additionally, the study demonstrates that FLP -N2 activation generates useful nitrogen compound, e.g., hydrazine (H2N-NH2). In summary, we conclude that FLP effectively activates N2 in tandem with oriented external electric fields (OEEFs), which play a crucial role. This FLP/OEEF combination may serve as a general activator of inert molecules.
Collapse
Affiliation(s)
- Shailja Jain
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
5
|
Jiang GD, Yang Q, Wei GP, Li ZY, He SG. Superior Reactivity of Molybdenum-Sulfur Cluster Anions Mo 5S 2- and Mo 5S 3- toward Dinitrogen. Inorg Chem 2023; 62:11318-11324. [PMID: 37428555 DOI: 10.1021/acs.inorgchem.3c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Inspired by the fact that Mo is a key element in biological nitrogenase, a series of gas-phase MoxSy- cluster anions are prepared and their reactivity toward N2 is investigated by the combination of mass spectrometry, photoelectron imaging spectroscopy, and density functional theory calculations. The Mo5S2- and Mo5S3- cluster anions show remarkable reactivity compared with the anionic species reported previously. The spectroscopic results in conjunction with theoretical analysis reveal that a facile cleavage of N≡N bonds takes place on Mo5S2- and Mo5S3-. The large dissociative adsorption energy of N2 and the favorable entrance channel for initial N2 approaching are proposed as two decisive factors for the superior reactivity of Mo5S2- and Mo5S3-. Besides, the modulation of S ligands on the reactivity of metal centers with N2 is proposed. The highly reactive metal-sulfur species may be obtained by the coordination of two to three sulfur atoms to bare metal clusters so that an appropriate combination of electronic structures and charge distributions can be achieved.
Collapse
Affiliation(s)
- Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Qi Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| |
Collapse
|
6
|
Cheng X, Li ZY, Jiang GD, Liu XX, Liu QY, He SG. Activation of Dinitrogen Promoted by Adsorption of C 6H 6 on Fe 2VC - Cluster Anions. J Phys Chem Lett 2023:6431-6436. [PMID: 37432842 DOI: 10.1021/acs.jpclett.3c01367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The introduction of organic ligands is one of the effective strategies to improve the stability and reactivity of metal clusters. Herein, the enhanced reactivity of benzene-ligated cluster anions Fe2VC(C6H6)- with respect to naked Fe2VC- is identified. Structural characterization suggests that C6H6 is molecularly bound to the dual metal site in Fe2VC(C6H6)-. Mechanistic details reveal that the cleavage of N≡N is feasible in Fe2VC(C6H6)-/N2 but hindered by an overall positive barrier in the Fe2VC-/N2 system. Further analysis discloses that the ligated C6H6 regulates the compositions and energy levels of the active orbitals of the metal clusters. More importantly, C6H6 serves as an electron reservoir for the reduction of N2 to lower the crucial energy barrier of N≡N splitting. This work demonstrates that the flexibility of C6H6 in terms of withdrawing and donating electrons is crucial to regulating the electronic structures of the metal cluster and enhancing the reactivity.
Collapse
Affiliation(s)
- Xin Cheng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Xiao-Xiao Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
7
|
Du S, Liu X, Ju B, Zhang J, Zou J, Li G, Fan H, Xie H, Jiang L. Spectroscopic Identification of the Dinitrogen Fixation and Activation by Metal Carbide Cluster Anions PtC n- ( n = 4-6). Inorg Chem 2023; 62:170-177. [PMID: 36573891 DOI: 10.1021/acs.inorgchem.2c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nitrogen fixation is confronted with great challenges in the field of chemistry. Herein, we report that single metal carbides PtCn- and PtCnN2- (n = 4-6) are indispensable intermediates in the process of nitrogen fixation by mass spectrometry coupled with anionic photoelectron spectroscopy, quantum chemical calculations, and simulated density-of-state spectra. The most stable isomers of these cluster anions are characterized to have linear chain structures. The fixation and activation of dinitrogen are facilitated by the charge transfer from Pt and Cn to N2. The significance of π back-donation of the 5d orbital of the Pt atom to the antibonding π orbits of N2 for dinitrogen fixation and activation is discussed in detail. This study not only provides a theoretical basis at the molecular level for the activation of dinitrogen by mononuclear metal carbide clusters but also provides a new paradigm for dinitrogen fixation.
Collapse
Affiliation(s)
- Shihu Du
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,School of Mathematics and Physics, Hebei University of Engineering, Handan056038, China
| | - Xuegang Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Bangmin Ju
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Jumei Zhang
- School of Life Science, Ludong University, Yantai, Shandong264025, China
| | - Jinghan Zou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| |
Collapse
|
8
|
Shima T, Zhuo Q, Hou Z. Dinitrogen activation and transformation by multimetallic polyhydride complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Wang YY, Ding XL, Chen Y, Wang MM, Li W, Wang X. Trimetallic clusters in the sumanene bowl for dinitrogen activation. Phys Chem Chem Phys 2022; 24:23265-23278. [PMID: 36156001 DOI: 10.1039/d2cp03346a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is of great importance to find catalysts for the nitrogen reduction reaction (NRR) with high stability and reactivity. A series of M3 clusters (M = Ti, Zr, V, and Nb) supported on sumanene (C21H12) were designed as potential catalysts for the NRR by taking advantage of the high reactivity of trimetallic clusters and the unique geometric and electronic properties of sumanene, a bowl-like organic molecule. Detailed mechanisms of NN bond cleavage on C21H12-M3 were investigated by DFT calculations and compared with those on bare M3 clusters. M3 in the sumanene bowl is very stable with large binding energies, which prohibits the cohesion of M3 into M6. In the bowl, M3 has a (quasi-) equilateral triangle structure with lengthened M-M bonds, which is particularly beneficial to the N2 transfer process on Ti3 and V3 clusters. The N-N bond can be dissociated by both M3 and C21H12-M3 clusters without the overall energy barriers. A blurring effect is found in which some geometric and electronic properties of different metal types become similar when M3 is supported on the substrate. Our work demonstrates that sumanene is a suitable substrate to support M3 in the activation of N2 with enhanced stability and maintained a high level of reactivity compared to bare M3.
Collapse
Affiliation(s)
- Ya-Ya Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Yan Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Meng-Meng Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| |
Collapse
|
10
|
Experimental and Theoretical Study of N2 Adsorption on Hydrogenated Y2C4H− and Dehydrogenated Y2C4− Cluster Anions at Room Temperature. Int J Mol Sci 2022; 23:ijms23136976. [PMID: 35805983 PMCID: PMC9266966 DOI: 10.3390/ijms23136976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
The adsorption of atmospheric dinitrogen (N2) on transition metal sites is an important topic in chemistry, which is regarded as the prerequisite for the activation of robust N≡N bonds in biological and industrial fields. Metal hydride bonds play an important part in the adsorption of N2, while the role of hydrogen has not been comprehensively studied. Herein, we report the N2 adsorption on the well-defined Y2C4H0,1− cluster anions under mild conditions by using mass spectrometry and density functional theory calculations. The mass spectrometry results reveal that the reactivity of N2 adsorption on Y2C4H− is 50 times higher than that on Y2C4− clusters. Further analysis reveals the important role of the H atom: (1) the presence of the H atom modifies the charge distribution of the Y2C4H− anion; (2) the approach of N2 to Y2C4H− is more favorable kinetically compared to that to Y2C4−; and (3) a natural charge analysis shows that two Y atoms and one Y atom are the major electron donors in the Y2C4− and Y2C4H− anion clusters, respectively. This work provides new clues to the rational design of TM-based catalysts by efficiently doping hydrogen atoms to modulate the reactivity towards N2.
Collapse
|
11
|
Mou LH, Li ZY, He SG. Recent Progress in Dinitrogen Activation by Gas-Phase Metal Species. J Phys Chem Lett 2022; 13:4159-4169. [PMID: 35507918 DOI: 10.1021/acs.jpclett.2c00850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the mechanisms to activate and functionalize dinitrogen (N2) is of great importance for the rational design of nitrogen-fixation catalysts. Reactions of gas-phase species with N2 are being actively studied to understand the bond activation and formation processes at a strictly molecular level. This Perspective provides an overview of the recent progress in combined experimental and theoretical studies on the activation and functionalization of N2 by gas-phase metal species. New mechanistic insights into N2 molecular adsorption, N≡N cleavage, and N-X (X = C, B, and H) formation have been introduced, in which the new reaction channels of ejecting neutral metal fragments and the coupling reactions of N2 with other molecules are highlighted. Finally, the current challenges and outlooks of N2 activation in the gas phase are discussed as well.
Collapse
Affiliation(s)
- Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| |
Collapse
|