1
|
Zhu J, Zhang Q, Ma L, Wang S, Ma Y, Duan X, Cao X, Fang Z, Liu Y, Wei Y, Feng C. Molecular diffusion in aqueous methanol solutions: The combined influence of hydrogen bonding and hydrophobic ends. J Chem Phys 2024; 161:174506. [PMID: 39484909 DOI: 10.1063/5.0233900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Although the nonmonotonic variation in the diffusion coefficients of alcohol and water with changing alcohol concentrations in aqueous solutions has been reported for many years, the underlying physical mechanisms remain unclear. Using molecular dynamics simulations, we investigated the molecular diffusion mechanisms in aqueous methanol solutions. Our findings reveal that the molecular diffusion is co-influenced by hydrogen bonding and the hydrophobic ends of methanol molecules. A stronger hydrogen bond (HB) network and a higher concentration of hydrophobic ends of methanol molecules both enhance molecular correlations, thereby slowing molecular diffusion in the solution. As methanol concentration increases, the HB network weakens, facilitating molecular diffusion. However, the increased concentration of hydrophobic ends counteracts this effect. Consequently, the diffusion coefficients of water and methanol molecules exhibit nonmonotonic changes. Previous studies have only focused on the role of HB networks. For the first time, we have identified the impact of the hydrophobic ends of alcohol on molecular diffusion in aqueous alcohol solutions. Our research contributes to a better understanding and manipulation of the properties of aqueous alcohol solutions and even liquids with complex compositions.
Collapse
Affiliation(s)
- Jianzhuo Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Qian Zhang
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Liang Ma
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Sheng Wang
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Ying Ma
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiangyi Duan
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiaoyu Cao
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Zhihang Fang
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yang Liu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yong Wei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Chao Feng
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
2
|
Morishita K, Sachar HS, Duncan TJ, Zhang Z, Marioni N, Herrera A, Asatekin A, Ganesan V. Anion Selectivities in Zwitterion Grafted Nanopores: Effect of Zwitterion Architecture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57888-57900. [PMID: 39397586 DOI: 10.1021/acsami.4c13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The separation of ions of similar charge is a crucial challenge in many applications, from water treatment to precious metal recovery. Membranes with cross-linked zwitterionic amphiphilic copolymer (ZAC-X) selective layers, which feature self-assembled, zwitterion-lined nanodomains for permeation, offer unique permselectivity between monovalent anions (e.g., Cl-/F-). This has motivated studies on the mechanisms of transport and selectivity in this family of materials. In this study, we conducted molecular dynamics simulations of aqueous salt solutions within zwitterion-functionalized nanopores to elucidate the influence of dipole orientation of the ZI ligands on anion diffusivities, partitioning, and permeabilities. Our model compares systems with contrasting ZI organization: surface-cation-anion (S-ZI+-ZI-, Motif A) and surface-anion-cation (S-ZI--ZI+, Motif B). Our results reveal that Motif A exhibits less pronounced ion pairing due to a spatial separation in the radial profiles of cations and anions. Motif B demonstrates prominent ion pairing for smaller anions owing to their overlap with cation distributions. Further, our potential of mean force profiles reveals that anion partitioning increases with anion size in both ligand motifs, whereas Motif B exhibits significantly higher partitioning selectivity toward larger anions compared to Motif A. Our results for ion diffusivities show that the self-diffusivities of both anions and cations are lower for Motif B compared to Motif A. Such trends in anion partitioning and diffusivities can be explained by differences in the interactions and steric hindrance experienced by the anionic species in Motifs A and B. Finally, our results for anion permselectivity, obtained by combining partitioning and diffusivity, indicate that partitioning trends dominate over diffusivity trends. Consequently, anion permeability increases with anion size, and ligand Motif B yields much higher permselectivity toward larger anions compared to ligand Motif A.
Collapse
Affiliation(s)
- Kazuya Morishita
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Harnoor Singh Sachar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tyler J Duncan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ashleigh Herrera
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
de Lucas M, Blazquez S, Troncoso J, Vega C, Gámez F. Dressing a Nonpolarizable Force Field for OH - in TIP4P/2005 Aqueous Solutions with Corrected Hirshfeld Charges. J Phys Chem Lett 2024; 15:9411-9418. [PMID: 39248393 PMCID: PMC11417996 DOI: 10.1021/acs.jpclett.4c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
We present a rigid model for the OH- ion parametrized for binary mixtures with TIP4P/2005-type water molecules. Li+, Na+ and K+ were selected as counterions, hence mimicking the important and widely used solutions of soluble alkaline hydroxides. The optimized atomic charge distributions were obtained by scaling in a factor of 0.85 those derived from the atomic dipole corrected Hirshfeld approach. The agreement between experimental and Molecular Dynamics simulation results is remarkable for a set of properties, namely, the dependence of the density of the solutions on the hydroxide concentration and on temperature, the structure (i.e., positions of the atom-to-atom radial distribution functions and coordination numbers), the viscosity coefficients, the surface tension, or the freezing point depression. The proposed optimized potential parameters for OH- thus enlarge the set of models comprised within the Madrid-2019 force field and widen the potential applicability of the TIP4P/2005 water model in basic environments.
Collapse
Affiliation(s)
- Marcos de Lucas
- Departamento
de Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, España
| | - Samuel Blazquez
- Departamento
de Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, España
| | - Jacobo Troncoso
- Departamento
de Física Aplicada, Universidade
de Vigo, Escola de Enxeñaría Aeronaútica e do
Espazo, E 32004, Ourense, España
| | - Carlos Vega
- Departamento
de Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, España
| | - Francisco Gámez
- Departamento
de Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, España
| |
Collapse
|
4
|
Nencini R, Tempra C, Biriukov D, Riopedre-Fernandez M, Cruces Chamorro V, Polák J, Mason PE, Ondo D, Heyda J, Ollila OHS, Jungwirth P, Javanainen M, Martinez-Seara H. Effective Inclusion of Electronic Polarization Improves the Description of Electrostatic Interactions: The prosECCo75 Biomolecular Force Field. J Chem Theory Comput 2024; 20:7546-7559. [PMID: 39186899 PMCID: PMC11391585 DOI: 10.1021/acs.jctc.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
prosECCo75 is an optimized force field effectively incorporating electronic polarization via charge scaling. It aims to enhance the accuracy of nominally nonpolarizable molecular dynamics simulations for interactions in biologically relevant systems involving water, ions, proteins, lipids, and saccharides. Recognizing the inherent limitations of nonpolarizable force fields in precisely modeling electrostatic interactions essential for various biological processes, we mitigate these shortcomings by accounting for electronic polarizability in a physically rigorous mean-field way that does not add to computational costs. With this scaling of (both integer and partial) charges within the CHARMM36 framework, prosECCo75 addresses overbinding artifacts. This improves agreement with experimental ion binding data across a broad spectrum of systems─lipid membranes, proteins (including peptides and amino acids), and saccharides─without compromising their biomolecular structures. prosECCo75 thus emerges as a computationally efficient tool providing enhanced accuracy and broader applicability in simulating the complex interplay of interactions between ions and biomolecules, pivotal for improving our understanding of many biological processes.
Collapse
Affiliation(s)
- Ricky Nencini
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Victor Cruces Chamorro
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Jakub Polák
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Daniel Ondo
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| |
Collapse
|
5
|
Liu HY, Mei KJ, Borrelli WR, Schwartz BJ. Simulating the Competitive Ion Pairing of Hydrated Electrons with Chaotropic Cations. J Phys Chem B 2024; 128:8557-8566. [PMID: 39178349 PMCID: PMC11382261 DOI: 10.1021/acs.jpcb.4c04290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Experiments show that the absorption spectrum of the hydrated electron (ehyd-) blue-shifts in electrolyte solutions compared with what is seen in pure water. This shift has been assigned to the ehyd-'s competitive ion-pairing interactions with the salt cation relative to the salt anion based on the ions' positions on the Hofmeister series. Remarkably, little work has been done investigating the ehyd-'s behavior when the salts have chaotropic cations, which should greatly change the ion-pairing interactions given that the ehyd- is a champion chaotrope. In this work, we remedy this by using mixed quantum/classical simulations to analyze the behavior of two different models of the ehyd- in aqueous RbF and RbI electrolyte solutions as a function of salt concentration. We find that the magnitude of the salt-induced spectral blue-shift is determined by a combination of the number of chaotropic Rb+ cations near the ehyd- and the number of salt anions near those cations so that the spectrum of the ehyd- directly reflects its local environment. We also find that the use of a soft-cavity ehyd- model predicts stronger competitive interactions with Rb+ relative to I- than a more traditional hard cavity model, leading to different predicted spectral shifts that should provide a way to distinguish between the two models experimentally. Our simulations predict that at the same concentration, salts with chaotropic cations should produce larger spectral blue-shifts than salts with kosmotropic cations. We also found that at high salt concentrations with chaotropic cations, the predicted blue-shift is greater when the salt anion is kosmotropic instead of chaotropic. Our goal is for this work to inspire experimentalists to make such measurements, which will help provide a spectroscopic means to distinguish between simulations models that predict different hydration structures for the ehyd-.
Collapse
Affiliation(s)
- Hannah Y Liu
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kenneth J Mei
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - William R Borrelli
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
6
|
Barbosa GD, Tavares FW, Striolo A. Molecular Interactions of Perfluorinated and Branched Fluorine-Free Surfactants at Interfaces: Insights from a New Reliable Force Field. J Chem Theory Comput 2024. [PMID: 39140228 DOI: 10.1021/acs.jctc.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a class of synthetic compounds with exceptional interfacial properties. Their widespread use in many industrial applications and consumer products, combined with their remarkable chemical and thermal stability, has led to their ubiquitous presence in environmental matrices, including surface water and groundwater. To replace PFAS with fluorine-free surfactants, it is necessary first to develop a deep molecular-level understanding of the mechanisms responsible for the exceptional properties of PFAS. For instance, it has been shown that fluorine-free surfactants with highly branched or methylated chains can achieve low surface tensions at air-water interfaces and can provide highly hydrophobic surface coatings. Although molecular simulations combined with experiments are promising for uncovering these mechanisms, the reliability of simulation results depends strongly on the accuracy of the force fields implemented. At the moment, atomistic force fields are not available to describe PFAS in a variety of environments. Ab initio methods could help fill this knowledge gap, but they are computationally demanding. As an alternative, ab initio calculations could be used to develop accurate force fields for atomistic simulations. In this work, a new algorithm is proposed, which, built from accurate ab initio calculations, yields force fields for perfluorinated sulfonic and perfluoroalkyl acids. The accuracy of the new force field was benchmarked against solvation free energy and interfacial tension data. The new force fields were then used to probe the interfacial behavior of the PFAS surfactants. The interfacial properties observed in our simulations were compared with those manifested by two branched fluorine-free surfactants. The good agreement achieved with experiments and ab initio calculations suggests that the proposed protocol could be implemented to study other perfluorinated substances and help in the design of fluorine-free surfactants for targeted applications.
Collapse
Affiliation(s)
- Gabriel D Barbosa
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Frederico W Tavares
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Alberto Striolo
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Mareš J, Mayorga Delgado P. Getting the intermolecular forces correct: introducing the ASTA strategy for a water model. RSC Adv 2024; 14:25712-25727. [PMID: 39148757 PMCID: PMC11325342 DOI: 10.1039/d4ra02685c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Having a force field for water providing good bulk properties is paramount for modern studies of most biological systems. Some of the most common three-site force fields are TIP3, SPC/ε or OPC3, providing a decent range of bulk properties. That does not mean though, that they have realistic inter-atomic forces. These force fields have been parameterized with a top-down approach, meaning, by fitting the force field parameters to the experimental bulk properties. This approach has been the governing strategy also for many variants of four- and more-site models. We test a bottom-up approach, in which the force field is parameterized by optimizing the non-bonded inter-atomic forces. Our philosophy is that correct inter-atomic forces lead to correct geometrical and dynamical properties. The first system we try to optimize with the accurately system tailored atomic (ASTA) approach is water, but we aim to eventually probe other systems in the future as well. We applied our ASTA strategy to find a good set of parameters providing accurate bulk properties for the simple three-site force field forms, and also for AMOEBA, a more detailed and polarizable force field. Even though our bottom-up approach did not provide satisfactory results for the simple three-site force fields (with fixed charges), for the case of the AMOEBA force field it led to a modification of the original strategy, giving very good intra- and inter-molecular forces, as compared to accurate quantum chemically calculated reference forces. At the same time, important bulk properties, in this study restricted to the density and diffusion, were accurately reproduced with respect to the experimental values.
Collapse
Affiliation(s)
- Jiří Mareš
- Department of Physics, University of Oulu Finland
| | | |
Collapse
|
8
|
Blazquez S, de Lucas M, Vega C, Troncoso J, Gámez F. The temperature of maximum in density of aqueous solutions of nitrate and ammonium salts: Testing the Madrid-2019 force field. J Chem Phys 2024; 161:046103. [PMID: 39056391 DOI: 10.1063/5.0217827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The shift in the temperature of maximum in density (TMD) at room pressure of aqueous solutions of a set of five salts containing NO3- and/or NH4+ groups is studied both through experiments and through molecular dynamics simulations using the Madrid-2019 force field for ions and the TIP4P/2005 model for water. The experiments demonstrate the potential transferability and limitations of the Madrid-2019 force field for nitrate and ammonium ions recently developed by our group at different temperatures and add updated information to the reported datasets of TMDs for strong electrolytes. By using the Despretz law, individual ion contributions are extracted for predictive purposes from the experimental values of the shift in the TMD. Interesting findings for the behavior of the shift in the TMD in nitrate salts expose that this property might be particularly challenging for modelization approaches when dealing with polyatomic species.
Collapse
Affiliation(s)
- S Blazquez
- Departamento de Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, E 28040 Madrid, Spain
| | - M de Lucas
- Departamento de Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, E 28040 Madrid, Spain
| | - C Vega
- Departamento de Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, E 28040 Madrid, Spain
| | - J Troncoso
- Departamento de Física Aplicada, Universidade de Vigo, Escola de Enxeñaría Aeronaútica e do Espazo, E 32004 Ourense, Spain
| | - F Gámez
- Departamento de Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, E 28040 Madrid, Spain
| |
Collapse
|
9
|
Sachar HS, Zofchak ES, Marioni N, Zhang Z, Ganesan V. Impact of Confinement and Zwitterionic Ligand Chemistry on Ion-Ion Selectivity of Functionalized Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9563-9578. [PMID: 38656161 DOI: 10.1021/acs.langmuir.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Membranes incorporating zwitterionic chemistries have recently emerged as promising candidates for facilitating challenging ion-ion separations. Transport of ions in such membranes predominantly occurs in hydrated nanopores lined with zwitterionic monomers. To shed light on the physics of ion-ion selectivity underlying such materials, we conducted molecular dynamics simulations of sodium halide transport in model nanopores grafted with sulfobetaine methacrylate molecules. Our results reveal that in both functionalized and unfunctionalized nanopores smaller ions prefer to reside near the pore center, while the larger ions tend to reside near the pore walls. An enhancement in the selective transport of larger anions is observed within the unfunctionalized nanopores relative to that in salt-in-water solutions. Upon functionalization of the nanopores with zwitterions (ZIs), the disparities in the anionic distribution profiles within the pores coupled with differences in the anion-ZI interactions result in a slowdown of larger anions relative to smaller anions. Increasing the ZI grafting density exacerbates these effects, further promoting the selective transport of smaller anions. Our results suggest that selectivity toward large anions can be realized by using nanoporous membranes with ZI content that is high enough to facilitate ion/water partitioning into the pores while preserving the characteristic tendency of the unfunctionalized pores to facilitate faster transport of the larger anions. On the other hand, selectivity toward smaller anions can be achieved by targeting ZI content within the pores that is high enough to significantly slow down the transport of large anions but not high enough to hinder the partitioning of ions/water molecules into the pore due to steric effects.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Everett S Zofchak
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| |
Collapse
|
10
|
Fernández-Fernández ÁM, Bárcena Á, Conde MM, Pérez-Sánchez G, Pérez-Rodríguez M, Piñeiro MM. Modeling oceanic sedimentary methane hydrate growth through molecular dynamics simulation. J Chem Phys 2024; 160:144107. [PMID: 38591679 DOI: 10.1063/5.0203116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024] Open
Abstract
The crystallization process of methane hydrates in a confined geometry resembling seabed porous silica sedimentary conditions has been studied using molecular dynamics simulations. With this objective in mind, a fully atomistic quartz silica slit pore has been designed, and the temperature stability of a methane hydrate crystalline seed in the presence of water and guest molecule methane has been analyzed. NaCl ion pairs have been added in different concentrations, simulating salinity conditions up to values higher than average oceanic conditions. The structure obtained when the hydrate crystallizes inside the pore is discussed, paying special attention to the presence of ionic doping inside the hydrate and the subsequent induced structural distortion. The shift in the hydrate stability conditions due to the increasing water salinity is discussed and compared with the case of unconfined hydrate, concluding that the influence of the confinement geometry and pore hydrophilicity produces a larger deviation in the confined hydrate phase equilibria.
Collapse
Affiliation(s)
| | - Álvaro Bárcena
- Dpto. de Física Aplicada, Univ. de Vigo, Vigo 36310, Spain
| | - María M Conde
- Dpto. de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid 28006, Spain
| | | | | | | |
Collapse
|
11
|
Frischknecht AL, Stevens MJ. Force Fields for High Concentration Aqueous KOH Solutions and Zincate Ions. J Phys Chem B 2024; 128:3475-3484. [PMID: 38547112 DOI: 10.1021/acs.jpcb.3c08302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Motivated by increasing interest in electrochemical devices that include highly alkaline electrolytes, we investigated two force fields for potassium hydroxide (KOH) at high concentrations in water. The "FNB" model uses the SPC/E water model, while the "FHM" model uses the TIP4P/2005 water model. We also developed parameters to describe zincate ions in these solutions. The density and viscosity of KOH using the FHM model are in better agreement with experiment than the values from the FNB model. Comparing the properties of the zincate solutions to the available experimental data, we find that both force fields agree reasonably well, although the FHM parameters give a better prediction of the viscosity. The developed force field parameters can be used in future simulations of zincate/KOH solutions in combination with other species of interest.
Collapse
Affiliation(s)
- Amalie L Frischknecht
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
12
|
Mortara L, Mukhina T, Chaimovich H, Brezesinski G, van der Vegt NFA, Schneck E. Anion Competition at Positively Charged Surfactant Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6949-6961. [PMID: 38502024 DOI: 10.1021/acs.langmuir.3c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Interactions of anions with hydrophobic surfaces of proteins and water-soluble polymers depend on the ability of the ions to shed their hydration shells. At positively charged surfactant monolayers, the interactions of anions are less well understood. Due to the interplay of electrostatic surface forces, hydration effects, and ion-ion interactions in the electrostatic double layer, a comprehensive microscopic picture remains elusive. Herein, we study the interactions of chloride, bromide, and a mixture of these two anions at the aqueous interface of dihexadecyldimethylammonium (DHDA+) and dioctadecyldimethylammonium (DODA+) cationic monolayers. Using molecular dynamics simulations and three surface-sensitive X-ray scattering techniques, we demonstrate that bromide interacts preferentially over chloride with both monolayers. The structure of the two monolayers and their interfacial electron density profiles obtained from the simulations quantitatively reproduce the experimental data. We observe that chloride and bromide form contact ion pairs with the quaternary ammonium groups on both monolayers. However, ion pairing with bromide leads to a greater reduction in the number of water molecules hydrating the anion, resulting in more energetically stable ion pairs. This leads to long-range (>3 nm) lateral correlations between bromide ions on the structured DODA+ monolayer. These observations indicate that ion hydration is the dominant factor determining the interfacial electrolyte structure.
Collapse
Affiliation(s)
- Laura Mortara
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Tetiana Mukhina
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Hernan Chaimovich
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Gerald Brezesinski
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | | | - Emanuel Schneck
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| |
Collapse
|
13
|
Troncoso J, González-Salgado D. The temperature of maximum density for aqueous solutions. J Chem Phys 2024; 160:100902. [PMID: 38465676 DOI: 10.1063/5.0180094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/26/2023] [Indexed: 03/12/2024] Open
Abstract
Experimental and theoretical advances for understanding the temperature of maximum density (TMD) of aqueous solutions are outlined. The main equations that relate the TMD behavior to key thermodynamic properties are stated. The experimental TMD data are classified as a function of the nature of the solute (inorganic electrolytes, non-electrolytes, organic salts and ionic liquids, and amino acids and proteins). In addition, the experimental results that explore the effect of pressure are detailed. These experimental data are rationalized by making use of qualitative and semi-quantitative arguments based on the thermodynamics of aqueous systems. The main theoretical and simulation advances in TMD for aqueous solutions are also shown-including new calculations in the context of the scaled particle theory-and their ability to reproduce the experimental data is evaluated. Finally, new experiments and theoretical and simulation developments, which could give important insights into the problem of TMD for aqueous solutions, are proposed.
Collapse
Affiliation(s)
- Jacobo Troncoso
- Instituto de Física e Ciencias Aeroespaciais da Universidade de Vigo and Unidad MSMN Asociada al CSIC por el IQF Blas Cabrera, Ourense 32004, Spain
| | - Diego González-Salgado
- Instituto de Física e Ciencias Aeroespaciais da Universidade de Vigo and Unidad MSMN Asociada al CSIC por el IQF Blas Cabrera, Ourense 32004, Spain
| |
Collapse
|
14
|
Savoj R, Agnew H, Zhou R, Paesani F. Molecular Insights into the Influence of Ions on the Water Structure. I. Alkali Metal Ions in Solution. J Phys Chem B 2024; 128:1953-1962. [PMID: 38373140 DOI: 10.1021/acs.jpcb.3c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
In this study, we explore the impact of alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) on the hydration structure of water using molecular dynamics simulations carried out with MB-nrg potential energy functions (PEFs). Our analyses include radial distribution functions, coordination numbers, dipole moments, and infrared spectra of water molecules, calculated as a function of solvation shells. The results collectively indicate a highly local influence of all of the alkali metal ions on the hydrogen-bond network established by the surrounding water molecules, with the smallest and most densely charged Li+ ion exerting the most pronounced effect. Remarkably, the MB-nrg PEFs demonstrate excellent agreement with available experimental data for the position and size of the first solvation shells, underscoring their potential as predictive models for realistic simulations of ionic aqueous solutions across various thermodynamic conditions and environments.
Collapse
Affiliation(s)
- Roya Savoj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Zheng Y, Deng T, Shi X, Zhang H, Liu B, Li X, Zheng W. Decoupled Design for Highly Efficient Perchlorate Anion Intercalation and High-Energy Rechargeable Aqueous Zn-Graphite Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306504. [PMID: 38064198 PMCID: PMC10953716 DOI: 10.1002/advs.202306504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Indexed: 02/17/2024]
Abstract
Seeking new cathode chemistry with high onset potential and compatibility with electrolytes has become a challenge for aqueous Zn ion batteries. Anion intercalation in graphite (4.5 V vs Li+ /Li) possesses the potentiality but usually shows a competitive relationship with oxygen evolution reaction (OER) in aqueous solutions. Herein, a decoupled design is proposed to optimize a full utilization of perchlorate ion intercalation in graphite cathode by pH adjustment. Benefiting from the decoupled design, high Coulombic efficiency is obtained by decelerating the kinetic of OER in acidic media. The decoupled Zn-graphite battery exhibits a wide potential window of 2.01 V, as well as an attractive energy density of 231 Wh kg-1 . In addition, a Zn-graphite battery withSO 4 2 - ${\mathrm{SO}}_4^{2 - }$ insertion is assembled, which demonstrates the capability of the proposed decoupled strategy to integrate novel electrode chemistries for high-performance aqueous Zn-based energy storage systems.
Collapse
Affiliation(s)
- Ying Zheng
- Key Laboratory of Automobile Materials of MOESchool of Materials Science and Engineeringand Jilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsJilin UniversityChangchun130012China
| | - Ting Deng
- Key Laboratory of Automobile Materials of MOESchool of Materials Science and Engineeringand Jilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsJilin UniversityChangchun130012China
| | - Xiaoyuan Shi
- Key Laboratory of Polyoxometalate Science of Ministry of EducationNortheast Normal UniversityChangchun130024China
| | - Hengbin Zhang
- Key Laboratory of Automobile Materials of MOESchool of Materials Science and Engineeringand Jilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsJilin UniversityChangchun130012China
| | - Bo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)Ministry of EducationChangchun130103China
| | - Xun Li
- Chemical engineering departmentUniversity of Chinese Academy of ScienceBeijing100049China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOESchool of Materials Science and Engineeringand Jilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsJilin UniversityChangchun130012China
| |
Collapse
|
16
|
Blazquez S, Bourg IC, Vega C. Madrid-2019 force field: An extension to divalent cations Sr2+ and Ba2. J Chem Phys 2024; 160:046101. [PMID: 38270237 DOI: 10.1063/5.0186233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In this work, we present a parameterization of Sr2+ and Ba2+ cations, which expands the alkali earth set of cations of the Madrid-2019 force field. We have tested the model against the experimental densities of eight different salts, namely, SrCl2, SrBr2, SrI2, Sr(NO3)2, BaCl2, BaBr2, BaI2, and Ba(NO3)2. The force field is able to reproduce the experimental densities of all these salts up to their solubility limit. Furthermore, we have computed the viscosities for two selected salts, finding that the experimental values are overestimated, but the predictions are still reasonable. Finally, the structural properties for all the salts have been calculated with this model and align remarkably well with experimental observations.
Collapse
Affiliation(s)
- S Blazquez
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - C Vega
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Kwan V, Consta S, Malek SMA. Variation of Surface Propensity of Halides with Droplet Size and Temperature: The Planar Interface Limit. J Phys Chem B 2024; 128:193-207. [PMID: 38127582 DOI: 10.1021/acs.jpcb.3c05701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The radial number density profiles of halide and alkali ions in aqueous clusters with equimolar radius ≲1.4 nm, which correspond to ≲255 H2O molecules, have been extensively studied by computations. However, the surface abundance of Cl-, Br-, and I- relative to the bulk interior in these smaller clusters may not be representative of the larger systems. Indeed, here we show that the larger the cluster is, the lower the relative surface abundance of chaotropic halides is. In droplets with an equimolar radius of ≈2.45 nm, which corresponds to ≈2000 H2O molecules, the polarizable halides show a clear number density maximum in the droplet's bulk-like interior. A similar pattern is observed in simulations of the aqueous planar interface with halide salts at room temperature. At elevated temperature the surface propensity of Cl- decreases gradually, while that of I- is partially preserved. The change in the chaotropic halide location at higher temperatures than the room temperature may considerably affect photochemical reactivity in atmospheric aerosols, vapor-liquid nucleation and growth mechanisms, and salt crystallization via solvent evaporation. We argue that the commonly used approach of nullifying parameters in a force field in order to find the factors that determine the ion location does not provide transferable insight into other force fields.
Collapse
Affiliation(s)
- Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | - Shahrazad M A Malek
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X7
| |
Collapse
|
18
|
Kumar S, Bagchi B. Anomalous Concentration Dependence of Viscosity: Hidden Role of Cross-Correlations in Aqueous Electrolyte Solutions. J Phys Chem B 2023; 127:11031-11044. [PMID: 38101333 DOI: 10.1021/acs.jpcb.3c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The viscosity of aqueous electrolyte solutions exhibits well-known composition-dependent anomalies that show certain definitive trends and universal features. The viscosity of LiCl and NaCl solutions increases with concentration in a monotonic fashion, while solutions of KCl, RbCl, and CsCl exhibit a more complex behavior. Here, the viscosity first decreases and then increases with increasing concentration, with a rather broad minimum at intermediate concentrations (ca. 1-3 m). To unearth the origin of such puzzling behavior, we carried out detailed molecular-level analyses by interrogating the exact Green-Kubo expression of viscosity in terms of the stress-stress time correlation function (SS-TCF). The total SS-TCF can be decomposed into a collection of three self- and three cross-SS-TCFs arising from the three constituent components (water, cations, and anions). Mode coupling theory (MCT) analysis for the friction on ions and the viscosity of the solution suggests the possible importance of two-particle static and time-dependent cross-correlations between water and the ions. We calculate the viscosity and other dynamical properties for all five electrolyte (LiCl, NaCl, KCl, RbCl, and CsCl) solutions over a range of concentrations, using two models of water (SPC/E and TIP4P/2005). The total viscosity derives non-negligible contributions from all of the terms. The cross-correlations are found to be surprisingly large and seen to play a hidden role in the concentration dependence. However, the importance of cross-correlations is often not discussed. Our study leads to a theoretical understanding of the microscopic origin of the observed anomalies in the composition dependence of viscosity across all five electrolytes.
Collapse
Affiliation(s)
- Shubham Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Zhu J, Zhao Z, Li X, Wei Y. Structural and dynamical properties of concentrated alkali- and alkaline-earth metal chloride aqueous solutions. J Chem Phys 2023; 159:214503. [PMID: 38054516 DOI: 10.1063/5.0178123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Concentrated ionic aqueous electrolytes possess a diverse array of applications across various fields, particularly in the field of energy storage. Despite extensive examination, the intricate relationships and numerous physical mechanisms underpinning diverse phenomena remain incompletely understood. Molecular dynamics simulations are employed to probe the attributes of aqueous solutions containing LiCl, NaCl, KCl, MgCl2, and CaCl2, spanning various solute fractions. The primary emphasis of the simulations is on unraveling the intricate interplay between these attributes and the underlying physical mechanisms. The configurations of cation-Cl- and Cl--Cl- pairs within these solutions are disclosed. As the solute fraction increases, consistent trends manifest regardless of solute type: (i) the number of hydrogen bonds formed by the hydration water surrounding ions decreases, primarily attributed to the growing presence of counter ions in proximity to the hydration water; (ii) the hydration number of ions exhibits varying trends influenced by multiple factor; and (iii) the diffusion of ions slows down, attributed to the enhanced confinement and rebound of cations and Cl- ions from the surrounding atoms, concurrently coupled with the changes in ion vibration modes. In our analysis, we have, for the first time, clarified the reasons behind the slowing down of the diffusion of the ions with increasing solute fraction. Our research contributes to a better understanding and manipulation of the attributes of ionic aqueous solutions and may help designing high-performance electrolytes.
Collapse
Affiliation(s)
- Jianzhuo Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Zhuodan Zhao
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xingyuan Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yong Wei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
20
|
Rueda Espinosa KJ, Kananenka AA, Rusakov AA. Novel Computational Chemistry Infrastructure for Simulating Astatide in Water: From Basis Sets to Force Fields Using Particle Swarm Optimization. J Chem Theory Comput 2023; 19:7998-8012. [PMID: 38014419 DOI: 10.1021/acs.jctc.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Using the example of astatine, the heaviest naturally occurring halogen whose isotope At-211 has promising medical applications, we propose a new infrastructure for large-scale computational models of heavy elements with strong relativistic effects. In particular, we focus on developing an accurate force field for At- in water based on reliable relativistic density functional theory (DFT) calculations. To ensure the reliability of such calculations, we design novel basis sets for relativistic DFT, via the particle swarm optimization algorithm to optimize the coefficients of the new basis sets and the polarization-consistent basis set idea's extension to heavy elements to eliminate the basis set error from DFT calculations. The resulting basis sets enable the well-grounded evaluation of relativistic DFT against "gold-standard" CCSD(T) results. Accounting for strong relativistic effects, including spin-orbit interaction, via our redesigned infrastructure, we elucidate a noticeable dissimilarity between At- and I- in halide-water force field parameters, radial distribution functions, diffusion coefficients, and hydration energies. This work establishes the framework for the systematic development of polarization-consistent basis sets for relativistic DFT and accurate force fields for molecular dynamics simulations to be used in large-scale models of complex molecular systems with elements from the bottom of the periodic table, including actinides and even superheavy elements.
Collapse
Affiliation(s)
- Kennet J Rueda Espinosa
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Alexander A Rusakov
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|
21
|
Avula NVS, Klein ML, Balasubramanian S. Understanding the Anomalous Diffusion of Water in Aqueous Electrolytes Using Machine Learned Potentials. J Phys Chem Lett 2023; 14:9500-9507. [PMID: 37851540 DOI: 10.1021/acs.jpclett.3c02112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The diffusivity of water in aqueous cesium iodide solutions is larger than that in neat liquid water and vice versa for sodium chloride solutions. Such peculiar ion-specific behavior, called anomalous diffusion, is not reproduced in typical force field based molecular dynamics (MD) simulations due to inadequate treatment of ion-water interactions. Herein, this hurdle is tackled by using machine learned atomic potentials (MLPs) trained on data from density functional theory calculations. MLP based atomistic MD simulations of aqueous salt solutions reproduce experimentally determined thermodynamic, structural, dynamical, and transport properties, including their varied trends in water diffusivities across salt concentration. This enables an examination of their intermolecular structure to unravel the microscopic underpinnings of the differences in their transport properties. While both ions in CsI solutions contribute to the faster diffusion of water molecules, the competition between the heavy retardation by Na ions and the slight acceleration by Cl ions in NaCl solutions reduces their water diffusivity.
Collapse
Affiliation(s)
- Nikhil V S Avula
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
22
|
Sachar HS, Zhang Z, Marioni N, Zofchak ES, Ganesan V. Role of Dielectric Drag in Circumventing the Solubility-Diffusivity Trade-off in Zwitterionic Copolymer Membranes. ACS Macro Lett 2023; 12:1293-1297. [PMID: 37695823 DOI: 10.1021/acsmacrolett.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Recent experiments have revealed that random zwitterionic amphiphilic copolymer (r-ZAC) membranes exhibit excellent Cl-/F- permselectivity circumventing the solubility-diffusivity trade-off. We conducted molecular dynamics simulations to investigate the origin of the experimental results on the transport of sodium halides in r-ZAC membranes. Our results indicate that the enhancement of Cl-/F- diffusivity selectivity in r-ZAC membranes (relative to that in bulk water) stems from the increase in dielectric drag dominating over the increase in Stokes drag, zwitterionic group-induced steric hindrance, and ion-polymer interactions. The importance of dielectric drag is further demonstrated by showing that reduction in ionic charges leads to a complete reversal of the diffusivity selectivity trends. We conclude that leveraging the impact of hydrophilic nanoconfinement on the dynamics of water can be utilized as a strategy to simultaneously augment solubility selectivity and diffusivity selectivity for separations, wherein the flux of the larger ionic species is desired over that of the smaller.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| | - Everett S Zofchak
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| |
Collapse
|
23
|
Alvarez F, Arbe A, Colmenero J. The Debye's model for the dielectric relaxation of liquid water and the role of cross-dipolar correlations. A MD-simulations study. J Chem Phys 2023; 159:134505. [PMID: 37787136 DOI: 10.1063/5.0168588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
By means of massive (more than 1.2 · 106 molecules) molecular dynamics simulations at 300 K we have disentangled self- and cross-dipolar contributions to the dielectric relaxation of liquid water that cannot be experimentally resolved. We have demonstrated that cross dipolar correlations are of paramount importance. They amount for almost a 60% of the total dielectric amplitude. The corresponding relaxation function is a one-step Debye-like function with a characteristic time, τcross, of the order of the phenomenological Debye time, τD. In contrast, the relaxation function corresponding to the self-contribution is rather complex and contains a fast decay related to dipolar librations and a second relaxation step that can be well described by two exponentials: a low-amplitude fast process (τ0 = 0.31 ps) and a main slow process (τself = 5.4 ps) that fully randomizes the dipolar orientation. In addition to dipolar relaxation functions, we have also calculated scattering-like magnitudes characterizing translation and rotation of water molecules. Although these processes can be considered as "jump" processes in the short time range, at the time scale of about τD-τcross, at which the cross-dipolar correlations decay to zero, the observed behavior cannot be distinguished from that corresponding to uncoupled Brownian translational and rotational diffusion. We propose that this is the reason why the Debye model, which does not consider intermolecular dipolar interactions, seems to work at time t ≳ τD.
Collapse
Affiliation(s)
- Fernando Alvarez
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Juan Colmenero
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| |
Collapse
|
24
|
Blazquez S, Abascal JLF, Lagerweij J, Habibi P, Dey P, Vlugt TJH, Moultos OA, Vega C. Computation of Electrical Conductivities of Aqueous Electrolyte Solutions: Two Surfaces, One Property. J Chem Theory Comput 2023; 19:5380-5393. [PMID: 37506381 PMCID: PMC10448725 DOI: 10.1021/acs.jctc.3c00562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 07/30/2023]
Abstract
In this work, we computed electrical conductivities under ambient conditions of aqueous NaCl and KCl solutions by using the Einstein-Helfand equation. Common force fields (charge q = ±1 e) do not reproduce the experimental values of electrical conductivities, viscosities, and diffusion coefficients. Recently, we proposed the idea of using different charges to describe the potential energy surface (PES) and the dipole moment surface (DMS). In this work, we implement this concept. The equilibrium trajectories required to evaluate electrical conductivities (within linear response theory) were obtained by using scaled charges (with the value q = ±0.75 e) to describe the PES. The potential parameters were those of the Madrid-Transport force field, which accurately describe viscosities and diffusion coefficients of these ionic solutions. However, integer charges were used to compute the conductivities (thus describing the DMS). The basic idea is that although the scaled charge describes the ion-water interaction better, the integer charge reflects the value of the charge that is transported due to the electric field. The agreement obtained with experiments is excellent, as for the first time electrical conductivities (and the other transport properties) of NaCl and KCl electrolyte solutions are described with high accuracy for the whole concentration range up to their solubility limit. Finally, we propose an easy way to obtain a rough estimate of the actual electrical conductivity of the potential model under consideration using the approximate Nernst-Einstein equation, which neglects correlations between different ions.
Collapse
Affiliation(s)
- Samuel Blazquez
- Dpto.
Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jose L. F. Abascal
- Dpto.
Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jelle Lagerweij
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Parsa Habibi
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD Delft, The Netherlands
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Carlos Vega
- Dpto.
Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
25
|
Li M, Lv L, Fang T, Hao L, Li S, Dong S, Wu Y, Dong X, Liu H. Self-Consistent Implementation of a Solvation Free Energy Framework to Predict the Salt Solubilities of Six Alkali Halides. J Chem Theory Comput 2023; 19:5586-5601. [PMID: 37471389 DOI: 10.1021/acs.jctc.3c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
To assess the salt solubilities of six alkali halides in aqueous systems, we proposed a thermodynamic cycle and an efficient molecular modeling methodology. The Gibbs free energy changes for vaporization, dissociation, and dissolution were calculated using the experimental data of ionic thermodynamic properties obtained from the NBS tables. Additionally, the Marcus' and Tissandier's solvation free energy data for Li+, Na+, K+, Cl-, and Br- ions were compared with the conventional solvation free energies by substituting into our self-consistent thermodynamic cycle. Furthermore, Tissandier's absolute solvation free energy data were used as the training set to refit the Lennard-Jones parameters of OPLS-AA force field for ions. To predict salt solubilities, an assumption of a pseudo-solvent was proposed to characterize the coupling work of a solute with its environment from infinitely diluted to saturated solutions, indicating that the Gibbs energy change of solvation process is a function of ionic strength. Following the self-consistency of the cycle, the newly derived formulas were used to determine the salt solubilities by interpolating the intersection of Gibbs free energy of dissolution and the zero free energy line. The refined ion parameters can also predict the structure and thermodynamic properties of aqueous electrolyte solutions, such as densities, pair correlation functions, hydration numbers, mean activity coefficients, vapor pressures, and the radial dependences of the net charge at 298.15 K and 1 bar. Our method can be used to characterize the solid-liquid equilibria of ions or charged particles in aqueous systems. Furthermore, for highly concentrated strong electrolyte systems, it is essential to introduce accurate water models and polarizable force fields.
Collapse
Affiliation(s)
- Miyi Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Liqiang Lv
- College of Chemical Engineering, Shijiazhuang University, Hebei, Shijiazhuang 050035, China
| | - Tao Fang
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Long Hao
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Shenhui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Shoulong Dong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Yufeng Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Xiao Dong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Helei Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences (Shanghai Advanced Research Institute, Chinese Academy of Sciences), Shanghai 201210, China
| |
Collapse
|
26
|
Sanchez-Burgos I, Muniz MC, Espinosa JR, Panagiotopoulos AZ. A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water. J Chem Phys 2023; 158:2889532. [PMID: 37158636 DOI: 10.1063/5.0144500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Computational studies of liquid water and its phase transition into vapor have traditionally been performed using classical water models. Here, we utilize the Deep Potential methodology-a machine learning approach-to study this ubiquitous phase transition, starting from the phase diagram in the liquid-vapor coexistence regime. The machine learning model is trained on ab initio energies and forces based on the SCAN density functional, which has been previously shown to reproduce solid phases and other properties of water. Here, we compute the surface tension, saturation pressure, and enthalpy of vaporization for a range of temperatures spanning from 300 to 600 K and evaluate the Deep Potential model performance against experimental results and the semiempirical TIP4P/2005 classical model. Moreover, by employing the seeding technique, we evaluate the free energy barrier and nucleation rate at negative pressures for the isotherm of 296.4 K. We find that the nucleation rates obtained from the Deep Potential model deviate from those computed for the TIP4P/2005 water model due to an underestimation in the surface tension from the Deep Potential model. From analysis of the seeding simulations, we also evaluate the Tolman length for the Deep Potential water model, which is (0.091 ± 0.008) nm at 296.4 K. Finally, we identify that water molecules display a preferential orientation in the liquid-vapor interface, in which H atoms tend to point toward the vapor phase to maximize the enthalpic gain of interfacial molecules. We find that this behavior is more pronounced for planar interfaces than for the curved interfaces in bubbles. This work represents the first application of Deep Potential models to the study of liquid-vapor coexistence and water cavitation.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue,Cambridge CB3 0HE, United Kingdom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Maria Carolina Muniz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue,Cambridge CB3 0HE, United Kingdom
- Departamento de Química Fisica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
27
|
Perin L, Gallo P. Phase Diagram of Aqueous Solutions of LiCl: a Study of Concentration Effects on the Anomalies of Water. J Phys Chem B 2023; 127:4613-4622. [PMID: 37167579 DOI: 10.1021/acs.jpcb.3c00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We perform molecular dynamics simulations in order to study thermodynamics and the structure of supercooled aqueous solutions of lithium chloride (LiCl) at concentrations c = 0.678 and 2.034 mol/kg. We model the solvent using the TIP4P/2005 potential and the ions using the Madrid-2019 force field, a force field particularly suited for studying this solution. We find that, for c = 0.678 mol/kg, the behavior of the equation of state, studied in the P-T plane, indicates the presence of a liquid-liquid phase transition, similar to what was previously found for bulk water. We estimate the position of the liquid-liquid critical point to be at Tc ≈ 174 K, Pc ≈ 1775 bar, and ρc ≈ 1.065 g/cm3. When the concentration is tripled to c = 2.034 mol/kg, no critical point is observed, indicating its possible disappearance at this concentration. We also study the water-water and water-ions structure in the two solutions, and we find that at the concentrations examined the effect of ions on the water-water structure is not strong, and all the features found in bulk water are preserved. We also calculate the hydration number of the Li and Cl ions, and in line with experiments, we find the value of 4 for Li+ and between 5.5 and 6 for Cl-, confirming the good performances of the Madrid-2019 force field.
Collapse
Affiliation(s)
- Leonardo Perin
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Paola Gallo
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| |
Collapse
|
28
|
Wolf S. Predicting Protein-Ligand Binding and Unbinding Kinetics with Biased MD Simulations and Coarse-Graining of Dynamics: Current State and Challenges. J Chem Inf Model 2023; 63:2902-2910. [PMID: 37133392 DOI: 10.1021/acs.jcim.3c00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The prediction of drug-target binding and unbinding kinetics that occur on time scales between milliseconds and several hours is a prime challenge for biased molecular dynamics simulation approaches. This Perspective gives a concise summary of the theory and the current state-of-the-art of such predictions via biased simulations, of insights into the molecular mechanisms defining binding and unbinding kinetics as well as of the extraordinary challenges predictions of ligand kinetics pose in comparison to binding free energy predictions.
Collapse
Affiliation(s)
- Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
29
|
Blazquez S, Conde MM, Vega C. Scaled charges for ions: An improvement but not the final word for modeling electrolytes in water. J Chem Phys 2023; 158:054505. [PMID: 36754806 DOI: 10.1063/5.0136498] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In this work, we discuss the use of scaled charges when developing force fields for NaCl in water. We shall develop force fields for Na+ and Cl- using the following values for the scaled charge (in electron units): ±0.75, ±0.80, ±0.85, and ±0.92 along with the TIP4P/2005 model of water (for which previous force fields were proposed for q = ±0.85 and q = ±1). The properties considered in this work are densities, structural properties, transport properties, surface tension, freezing point depression, and maximum in density. All the developed models were able to describe quite well the experimental values of the densities. Structural properties were well described by models with charges equal to or larger than ±0.85, surface tension by the charge ±0.92, maximum in density by the charge ±0.85, and transport properties by the charge ±0.75. The use of a scaled charge of ±0.75 is able to reproduce with high accuracy the viscosities and diffusion coefficients of NaCl solutions for the first time. We have also considered the case of KCl in water, and the results obtained were fully consistent with those of NaCl. There is no value of the scaled charge able to reproduce all the properties considered in this work. Although certainly scaled charges are not the final word in the development of force fields for electrolytes in water, its use may have some practical advantages. Certain values of the scaled charge could be the best option when the interest is to describe certain experimental properties.
Collapse
Affiliation(s)
- S Blazquez
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M M Conde
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - C Vega
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
30
|
Building a Hofmeister-like series for the maximum in density temperature of aqueous electrolyte solutions. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
31
|
Panagiotopoulos AZ, Yue S. Dynamics of Aqueous Electrolyte Solutions: Challenges for Simulations. J Phys Chem B 2023; 127:430-437. [PMID: 36607836 DOI: 10.1021/acs.jpcb.2c07477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This Perspective article focuses on recent simulation work on the dynamics of aqueous electrolytes. It is well-established that full-charge, nonpolarizable models for water and ions generally predict solution dynamics that are too slow in comparison to experiments. Models with reduced (scaled) charges do better for solution diffusivities and viscosities but encounter issues describing other dynamic phenomena such as nucleation rates of crystals from solution. Polarizable models show promise, especially when appropriately parametrized, but may still miss important physical effects such as charge transfer. First-principles calculations are starting to emerge for these properties that are in principle able to capture polarization, charge transfer, and chemical transformations in solution. While direct ab initio simulations are still too slow for simulations of large systems over long time scales, machine-learning models trained on appropriate first-principles data show significant promise for accurate and transferable modeling of electrolyte solution dynamics.
Collapse
Affiliation(s)
| | - Shuwen Yue
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Chubak I, Alon L, Silletta EV, Madelin G, Jerschow A, Rotenberg B. Quadrupolar 23Na + NMR relaxation as a probe of subpicosecond collective dynamics in aqueous electrolyte solutions. Nat Commun 2023; 14:84. [PMID: 36604414 PMCID: PMC9816157 DOI: 10.1038/s41467-022-35695-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Nuclear magnetic resonance relaxometry represents a powerful tool for extracting dynamic information. Yet, obtaining links to molecular motion is challenging for many ions that relax through the quadrupolar mechanism, which is mediated by electric field gradient fluctuations and lacks a detailed microscopic description. For sodium ions in aqueous electrolytes, we combine ab initio calculations to account for electron cloud effects with classical molecular dynamics to sample long-time fluctuations, and obtain relaxation rates in good agreement with experiments over broad concentration and temperature ranges. We demonstrate that quadrupolar nuclear relaxation is sensitive to subpicosecond dynamics not captured by previous models based on water reorientation or cluster rotation. While ions affect the overall water retardation, experimental trends are mainly explained by dynamics in the first two solvation shells of sodium, which contain mostly water. This work thus paves the way to the quantitative understanding of quadrupolar relaxation in electrolyte and bioelectrolyte systems.
Collapse
Affiliation(s)
- Iurii Chubak
- Sorbonne Université CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005, Paris, France
| | - Leeor Alon
- New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY, 10016, USA
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Emilia V Silletta
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Medina Allende s/n, X5000HUA, Córdoba, Argentina
- Instituto de Física Enrique Gaviola, CONICET, Medina Allende s/n, X5000HUA, Córdoba, Argentina
| | - Guillaume Madelin
- New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY, 10016, USA
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Alexej Jerschow
- New York University, Department of Chemistry, 100 Washington Square E, New York, NY, 10003, USA.
| | - Benjamin Rotenberg
- Sorbonne Université CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005, Paris, France.
| |
Collapse
|
33
|
Habibi P, Rahbari A, Blazquez S, Vega C, Dey P, Vlugt TJH, Moultos OA. A New Force Field for OH - for Computing Thermodynamic and Transport Properties of H 2 and O 2 in Aqueous NaOH and KOH Solutions. J Phys Chem B 2022; 126:9376-9387. [PMID: 36325986 PMCID: PMC9677430 DOI: 10.1021/acs.jpcb.2c06381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The thermophysical properties of aqueous electrolyte solutions are of interest for applications such as water electrolyzers and fuel cells. Molecular dynamics (MD) and continuous fractional component Monte Carlo (CFCMC) simulations are used to calculate densities, transport properties (i.e., self-diffusivities and dynamic viscosities), and solubilities of H2 and O2 in aqueous sodium and potassium hydroxide (NaOH and KOH) solutions for a wide electrolyte concentration range (0-8 mol/kg). Simulations are carried out for a temperature and pressure range of 298-353 K and 1-100 bar, respectively. The TIP4P/2005 water model is used in combination with a newly parametrized OH- force field for NaOH and KOH. The computed dynamic viscosities at 298 K for NaOH and KOH solutions are within 5% from the reported experimental data up to an electrolyte concentration of 6 mol/kg. For most of the thermodynamic conditions (especially at high concentrations, pressures, and temperatures) experimental data are largely lacking. We present an extensive collection of new data and engineering equations for H2 and O2 self-diffusivities and solubilities in NaOH and KOH solutions, which can be used for process design and optimization of efficient alkaline electrolyzers and fuel cells.
Collapse
Affiliation(s)
- Parsa Habibi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628 CDDelft, The Netherlands
| | - Ahmadreza Rahbari
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - Samuel Blazquez
- Depto.
Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Carlos Vega
- Depto.
Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628 CDDelft, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| |
Collapse
|
34
|
Pluhařová E, Stirnemann G, Laage D. On water reorientation dynamics in cation hydration shells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Polarizable force fields for accurate molecular simulations of aqueous solutions of electrolytes, crystalline salts, and solubility: Li+, Na+, K+, Rb+, F−, Cl−, Br−, I−. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Pethes I. Towards the correct microscopic structure of aqueous CsCl solutions with a comparison of classical interatomic potential models. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Borkowski AK, Thompson WH. Shining (Infrared) Light on the Hofmeister Series: Driving Forces for Changes in the Water Vibrational Spectra in Alkali-Halide Salt Solutions. J Phys Chem B 2022; 126:6700-6712. [PMID: 36004804 DOI: 10.1021/acs.jpcb.2c03957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Hofmeister series is frequently used to rank ions based on their behavior from chaotropes ("structure breakers"), which weaken the surrounding hydrogen-bond network, to kosmotropes ("structure makers"), which enhance it. Here, we use fluctuation theory to investigate the energetic and entropic driving forces underlying the Hofmeister series for aqueous alkali-halide solutions. Specifically, we exploit the OH stretch infrared (IR) spectrum in isotopically dilute HOD/D2O solutions as a probe of the effect of the salt on the water properties for different concentrations and choice of halide anion. Fluctuation theory is used to calculate the temperature derivative of these IR spectra, including decomposition of the derivative into different energetic contributions. These contributions are used to determine the thermodynamic driving forces in terms of effective internal energy and entropic contributions. This analysis implicates entropic contributions as the key factor in the Hofmeister series behavior of the OH stretch IR spectra, while the effective internal energy is nearly ion-independent.
Collapse
Affiliation(s)
- Ashley K Borkowski
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
38
|
Sedano LF, Blazquez S, Noya EG, Vega C, Troncoso J. Maximum in density of electrolyte solutions: Learning about ion-water interactions and testing the Madrid-2019 force field. J Chem Phys 2022; 156:154502. [PMID: 35459318 DOI: 10.1063/5.0087679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we studied the effect of Li+, Na+, K+, Mg2+, and Ca2+ chlorides and sulfates on the temperature of maximum density (TMD) of aqueous solutions at room pressure. Experiments at 1 molal salt concentration were carried out to determine the TMD of these solutions. We also performed molecular dynamics simulations to estimate the TMD at 1 and 2 m with the Madrid-2019 force field, which uses the TIP4P/2005 water model and scaled charges for the ions, finding an excellent agreement between experiment and simulation. All the salts studied in this work shift the TMD of the solution to lower temperatures and flatten the density vs temperature curves (when compared to pure water) with increasing salt concentration. The shift in the TMD depends strongly on the nature of the electrolyte. In order to explore this dependence, we have evaluated the contribution of each ion to the shift in the TMD concluding that Na+, Ca2+, and SO4 2- seem to induce the largest changes among the studied ions. The volume of the system has been analyzed for salts with the same anion and different cations. These curves provide insight into the effect of different ions upon the structure of water. We claim that the TMD of electrolyte solutions entails interesting physics regarding ion-water and water-water interactions and should, therefore, be considered as a test property when developing force fields for electrolytes. This matter has been rather unnoticed for almost a century now and we believe it is time to revisit it.
Collapse
Affiliation(s)
- L F Sedano
- Depto. Química Física I (Unidad Asociada de I+D+i al CSIC), Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Blazquez
- Depto. Química Física I (Unidad Asociada de I+D+i al CSIC), Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E G Noya
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - C Vega
- Depto. Química Física I (Unidad Asociada de I+D+i al CSIC), Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J Troncoso
- Departamento de Física Aplicada, Universidad de Vigo, Facultad de Ciencias del Campus de Ourense, E 32004 Ourense, Spain
| |
Collapse
|
39
|
Lamas CP, Vega C, Noya EG. Freezing point depression of salt aqueous solutions using the Madrid-2019 model. J Chem Phys 2022; 156:134503. [PMID: 35395902 DOI: 10.1063/5.0085051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Salt aqueous solutions are relevant in many fields, ranging from biological systems to seawater. Thus, the availability of a force-field that is able to reproduce the thermodynamic and dynamic behavior of salt aqueous solutions would be of great interest. Unfortunately, this has been proven challenging, and most of the existing force-fields fail to reproduce much of their behavior. In particular, the diffusion of water or the salt solubility are often not well reproduced by most of the existing force-fields. Recently, the Madrid-2019 model was proposed, and it was shown that this force-field, which uses the TIP4P/2005 model for water and non-integer charges for the ions, provides a good description of a large number of properties, including the solution densities, viscosities, and the diffusion of water. In this work, we assess the performance of this force-field on the evaluation of the freezing point depression. Although the freezing point depression is a colligative property that at low salt concentrations depends solely on properties of pure water, a good model for the electrolytes is needed to accurately predict the freezing point depression at moderate and high salt concentrations. The coexistence line between ice and several salt aqueous solutions (NaCl, KCl, LiCl, MgCl2, and Li2SO4) up to the eutectic point is estimated from direct coexistence molecular dynamics simulations. Our results show that this force-field reproduces fairly well the experimentally measured freezing point depression with respect to pure water freezing for all the salts and at all the compositions considered.
Collapse
Affiliation(s)
- Cintia P Lamas
- Departamento de Química-Física I (Unidad de I+D+i Asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento de Química-Física I (Unidad de I+D+i Asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eva G Noya
- Instituto de Química Física Rocasolano, CSIC, C/ Serrano 119, 28006 Madrid, Spain
| |
Collapse
|