1
|
Hillers-Bendtsen AE, Johansen MB, Juncker von Buchwald T, Mikkelsen KV, Olsen J, Jørgensen P, Helgaker T. Cluster perturbation theory. XI. Excitation-energy series using a variational excitation-energy function. J Chem Phys 2025; 162:024114. [PMID: 39783974 DOI: 10.1063/5.0236908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025] Open
Abstract
Traditionally, excitation energies in coupled-cluster (CC) theory have been calculated by solving the CC Jacobian eigenvalue equation. However, based on our recent work [Jørgensen et al., Sci. Adv. 10, eadn3454 (2024)], we propose a reformulation of the calculation of excitation energies where excitation energies are determined as a conventional molecular property. To this end, we introduce an excitation-energy function that depends on the CC Jacobian and the right and left eigenvectors for the Jacobian eigenvalue problem. This excitation-energy function is variational with respect to the right and left eigenvectors but not with respect to the cluster amplitudes. Instead, the cluster amplitudes satisfy the cluster-amplitude equations, and we set up an excitation-energy Lagrangian by adding to the excitation-energy function the cluster-amplitude equations with an undetermined multiplier for each cluster-amplitude constraint. The excitation-energy Lagrangian is variational in all its parameters. Based on the variational property of the Lagrangian, we have determined two quadratically convergent excitation-energy series: the total-order cluster-perturbation (tCP) and variational cluster-perturbation (vCP) excitation-energy series. Calculations of the excitation energies of three small molecules have shown that the vCP series is to be preferred over the tCP series. The test calculations have been carried out for CPS(D) expansions [targeting the CC singles-and-doubles (CCSD) wave function from the CC singles wave function] and the CPSD(T) expansion [targeting the CC singles-doubles-triples (CCSDT) wave function from the CCSD wave function]. For the S(D) and SD(T) orbital excitation space calculations, we obtain in the second vCP iteration excitation energies with a mean deviation from CCSD excitation energies of about 0.04 eV for the S(D) orbital spaces, and for the SD(T) orbital space calculation, we obtain a mean deviation from the CCSDT excitation energies of 0.001 eV.
Collapse
Affiliation(s)
| | - Magnus Bukhave Johansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| | - Theo Juncker von Buchwald
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg. 206, DK 2800 Kgs. Lyngby, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK 8000 Aarhus C, Denmark
| | - Poul Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK 8000 Aarhus C, Denmark
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
2
|
Hillers-Bendtsen AE, Juncker von Buchwald T, Johansen MB, Knudsen RMH, Jørgensen P, Mikkelsen KV. Cluster Perturbation Theory for Core Excited States and Core Ionization Potentials Using Core-Valence Separation. J Phys Chem A 2024; 128:10087-10098. [PMID: 39536320 DOI: 10.1021/acs.jpca.4c06673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of accurate and fast computational procedures for the ab initio calculation of X-ray spectroscopies is paramount to facilitate theoretical analysis of modern X-ray experiments on molecules. Herein, we present the extension of Cluster Perturbation theory to comprehend the calculation of core excited states and core ionization potentials using the core-valence separation approximation, which has seen widespread success for various quantum chemistry methods. We derive the theoretical framework for introducing core-valence separation into Cluster Perturbation series for excitation energies and display the performance of the methodology in S(D) orbital excitation spaces. The obtained core excitation energies on a test set of medium sized organic molecules show that carbon, nitrogen, and oxygen K-edge excitation energies can be determined with errors below 2 eV relative to the CCSD reference results using the developed CPS(D) excitation energy models which can be used for systems way beyond the reach of conventional CCSD.
Collapse
Affiliation(s)
| | - Theo Juncker von Buchwald
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK 2100, Denmark
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg. 206, Lyngby DK 2800 Kgs., Denmark
| | - Magnus Bukhave Johansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK 2100, Denmark
| | | | - Poul Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK 8000, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK 2100, Denmark
| |
Collapse
|
3
|
Hillers-Bendtsen AE, Kjeldal FØ, Høyer NM, Johansen MB, Juncker von Buchwald T, Iuel Lunøe Dünweber PG, Olsen LH, Jensen F, Olsen J, Jørgensen P, Mikkelsen KV. Cluster perturbation theory. X. A parallel implementation of Lagrangian perturbation series for the coupled cluster singles and doubles ground-state energy through fifth order. J Chem Phys 2024; 161:184111. [PMID: 39530365 DOI: 10.1063/5.0234183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
We describe an efficient implementation of cluster perturbation and Møller-Plesset Lagrangian energy series through the fifth order that targets the coupled cluster singles and doubles energy utilizing the resolution of the identity approximation. We illustrate the computational performance of the implementation by performing ground state energy calculations on systems with up to 1200 basis functions using a single node and by comparison to conventional coupled cluster singles and doubles calculations. We further show that our hybrid message passing interface/open multiprocessing parallel implementation that also utilizes graphical processing units can be used to obtain fifth order energies on systems with almost 1200 basis functions with a 90 min "time to solution" running on Frontier at Oak Ridge National Laboratory.
Collapse
Affiliation(s)
| | - Frederik Ørsted Kjeldal
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK2100 Copenhagen Ø, Denmark
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK2800 Kongens Lyngby, Denmark
| | - Nicolai Machholdt Høyer
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK2100 Copenhagen Ø, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK8000 Aarhus C, Denmark
| | - Magnus Bukhave Johansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK2100 Copenhagen Ø, Denmark
| | - Theo Juncker von Buchwald
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK2100 Copenhagen Ø, Denmark
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK2800 Kongens Lyngby, Denmark
| | | | - Lars Henrik Olsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK2100 Copenhagen Ø, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK8000 Aarhus C, Denmark
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK8000 Aarhus C, Denmark
| | - Poul Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK8000 Aarhus C, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK2100 Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Hillers-Bendtsen AE, Jensen F, Mikkelsen KV, Olsen J, Jørgensen P. Cluster perturbation theory IX: Perturbation series for the coupled cluster singles and doubles ground state energy. J Chem Phys 2024; 160:104108. [PMID: 38477336 DOI: 10.1063/5.0192388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
In this paper, we develop and analyze a number of perturbation series that target the coupled cluster singles and doubles (CCSD) ground state energy. We show how classical Møller-Plesset perturbation theory series can be restructured to target the CCSD energy based on a reference CCS calculation and how the corresponding cluster perturbation series differs from the classical Møller-Plesset perturbation series. Subsequently, we reformulate these series using the coupled cluster Lagrangian framework to obtain series, where fourth and fifth order energies are determined only using parameters through second order. To test the methods, we perform a series of test calculations on molecular photoswitches of both total energies and reaction energies. We find that the fifth order reaction energies are of CCSD quality and that they are of comparable accuracy to state-of-the-art approximations to the CCSD energy based on local pair natural orbitals. The advantage of the present approach over local correlation methods is the absence of user defined threshold parameters for neglecting or approximating contributions to the correlation energy. Fixed threshold parameters lead to discontinuous energy surfaces, although this effect is often small enough to be ignored, but the present approach has a differentiable energy that will facilitate derivation and implementation of gradients and higher derivatives. A further advantage is that the calculation of the perturbation correction is non-iterative and can, therefore, be calculated in parallel, leading to a short time-to-solution.
Collapse
Affiliation(s)
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK 8000 Aarhus C, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK 8000 Aarhus C, Denmark
| | - Poul Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Hillers-Bendtsen AE, Mikkelsen KV, Martinez TJ. Tensor Hypercontraction of Cluster Perturbation Theory: Quartic Scaling Perturbation Series for the Coupled Cluster Singles and Doubles Ground-State Energies. J Chem Theory Comput 2024; 20:1932-1943. [PMID: 38380846 DOI: 10.1021/acs.jctc.3c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Even though cluster perturbation theory has been shown to be a robust noniterative alternative to coupled cluster theory, it is still plagued by high order polynomial computational scaling and the storage of higher order tensors. We present a proof-of-concept strategy for implementing a cluster perturbation theory ground-state energy series for the coupled cluster singles and doubles energy with N4 computational scaling using tensor hypercontraction (THC). The reduction in computational scaling by two orders is achieved by decomposing two electron repulsion integrals, doubles amplitudes and multipliers, as well as selected double intermediates to the THC format. Using the outlined strategy, we showcase that the THC pilot implementations retain numerical accuracy to within 1 kcal/mol relative to corresponding conventional and density fitting implementations, and we empirically verify the N4 scaling.
Collapse
Affiliation(s)
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Todd J Martinez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
6
|
Corzo HH, Hillers-Bendtsen AE, Barnes A, Zamani AY, Pawłowski F, Olsen J, Jørgensen P, Mikkelsen KV, Bykov D. Corrigendum: Coupled cluster theory on modern heterogeneous supercomputers. Front Chem 2023; 11:1256510. [PMID: 37654900 PMCID: PMC10466216 DOI: 10.3389/fchem.2023.1256510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fchem.2023.1154526.].
Collapse
Affiliation(s)
| | | | | | - Abdulrahman Y. Zamani
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, CA, United States
| | - Filip Pawłowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Poul Jørgensen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Dmytro Bykov
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
7
|
Corzo HH, Hillers-Bendtsen AE, Barnes A, Zamani AY, Pawłowski F, Olsen J, Jørgensen P, Mikkelsen KV, Bykov D. Coupled cluster theory on modern heterogeneous supercomputers. Front Chem 2023; 11:1154526. [PMID: 37388945 PMCID: PMC10303140 DOI: 10.3389/fchem.2023.1154526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
This study examines the computational challenges in elucidating intricate chemical systems, particularly through ab-initio methodologies. This work highlights the Divide-Expand-Consolidate (DEC) approach for coupled cluster (CC) theory-a linear-scaling, massively parallel framework-as a viable solution. Detailed scrutiny of the DEC framework reveals its extensive applicability for large chemical systems, yet it also acknowledges inherent limitations. To mitigate these constraints, the cluster perturbation theory is presented as an effective remedy. Attention is then directed towards the CPS (D-3) model, explicitly derived from a CC singles parent and a doubles auxiliary excitation space, for computing excitation energies. The reviewed new algorithms for the CPS (D-3) method efficiently capitalize on multiple nodes and graphical processing units, expediting heavy tensor contractions. As a result, CPS (D-3) emerges as a scalable, rapid, and precise solution for computing molecular properties in large molecular systems, marking it an efficient contender to conventional CC models.
Collapse
Affiliation(s)
| | | | | | - Abdulrahman Y. Zamani
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, CA, United States
| | - Filip Pawłowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Poul Jørgensen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Dmytro Bykov
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
8
|
Hillers-Bendtsen AE, Høyer NM, Kjeldal FØ, Mikkelsen KV, Olsen J, Jorgensen P. Cluster perturbation theory. VIII. First order properties for a coupled cluster state. J Chem Phys 2022; 157:024108. [DOI: 10.1063/5.0082585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have extended cluster perturbation (CP) theory to comprehend the calculation of first order properties (FOPs). We have determined CP FOP series where FOPs are determined as a first energy derivative and also where the FOPs are determined as a generalized expectation value of the external perturbation operator over the coupled cluster state and its biorthonormal multiplier state. For S(D) orbital excitation spaces, we find that the CP series for FOPs that are determined as a first derivative in general in second order have errors of a few per cent in the singles and doubles correlation contribution relative to the targeted coupled cluster (CC) results. For a SD(T) orbital excitation space, we find that the CP series for FOPs determined as a generalized expectation value in second order have errors of about ten percent in the triples correlation contribution relative to the targeted CC results. These second order models therefore constitute viable alternatives for determining high quality FOPs.
Collapse
Affiliation(s)
| | | | | | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen Institute of Chemistry, Denmark
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University Department of Chemistry, Denmark
| | | |
Collapse
|
9
|
Hillers-Bendtsen AE, Iuel Lunøe Dünweber PG, Olsen LH, Mikkelsen KV. Prospects of Improving Molecular Solar Energy Storage of the Norbornadiene/Quadricyclane System through Bridgehead Modifications. J Phys Chem A 2022; 126:2670-2676. [PMID: 35467862 DOI: 10.1021/acs.jpca.2c00950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated novel bicyclic diene molecular solar thermal energy storage systems that presently are the ones with the highest predicted energy density. Using a variety of different ab initio quantum chemical methods, we report storage energies, absorption spectra, and reaction barriers for the release of stored energy for a series of bicyclic dienes. The bicyclic dienes are all constructed by modifying the bridgehead of the well-known norbornadiene/quadricyclane (NBD/QC) system. In conclusion, we find it promising that it is possible to significantly amplify the storage energy of the NBD/QC system without seriously compromising other crucial properties by introducing simple modifications to the bridgehead.
Collapse
Affiliation(s)
| | | | - Lars Henrik Olsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| |
Collapse
|
10
|
Olsen J, Hillers-Bendtsen AE, Kjeldal FØ, Høyer NM, Mikkelsen KV, Jorgensen P. Cluster Perturbation Theory. VII. The convergence of Cluster Perturbation Expansions. J Chem Phys 2022; 157:024107. [DOI: 10.1063/5.0082584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The convergence of the recently developed cluster perturbation CP expansions (Pawlowski et al, J. Chem. Phys. 150 134108(2019)) is analyzed with the double purpose of developing the mathematical tools and concepts needed to describe these expansions at general order and to identify the factors that define the rate of convergence of CP series. To this end, the CP energy, amplitude, and Lagrangian multiplier equations as functions of the perturbation strength are developed. By determining the critical points, defined as the perturbation strengths for which the Jacobian become singular, the rate of convergence as well as the intruder and critical states are determined for five simple molecules: BH, CO, H2O, NH3, and HF. To describe the patterns of convergence for these expansions at orders lower than the high-order asymptotic limit, a model is developed, where the perturbation corrections arise from two critical points. It is shown that this model allows rationalization of the behavior of the perturbation corrections at much lower order than required for the onset of the asymptotic convergence. For the H2O, CO, and HF molecules, the pattern and rate of convergence is defined by critical states where the Fock-operator underestimates the excitation energies, whereas the pattern and rate of convergence for BH is defined by critical states where the Fock-operator overestimates the excitation energy. For the NH3 molecule, both forms of critical points are required to describe the convergence behavior up to at least order 25.
Collapse
Affiliation(s)
- Jeppe Olsen
- Department of Chemistry, Aarhus University Department of Chemistry, Denmark
| | | | | | | | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen Institute of Chemistry, Denmark
| | | |
Collapse
|