1
|
Gilson MK, Kurtzman T. Free Energy Density of a Fluid and Its Role in Solvation and Binding. J Chem Theory Comput 2024; 20:2871-2887. [PMID: 38536144 PMCID: PMC11197885 DOI: 10.1021/acs.jctc.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The concept that a fluid has a position-dependent free energy density appears in the literature but has not been fully developed or accepted. We set this concept on an unambiguous theoretical footing via the following strategy. First, we set forth four desiderata that should be satisfied by any definition of the position-dependent free energy density, f(R), in a system comprising only a fluid and a rigid solute: its volume integral, plus the fixed internal energy of the solute, should be the system free energy; it deviates from its bulk value, fbulk, near a solute but should asymptotically approach fbulk with increasing distance from the solute; it should go to zero where the solvent density goes to zero; and it should be well-defined in the most general case of a fluid made up of flexible molecules with an arbitrary interaction potential. Second, we use statistical thermodynamics to formulate a definition of the free energy density that satisfies these desiderata. Third, we show how any free energy density satisfying the desiderata may be used to analyze molecular processes in solution. In particular, because the spatial integral of f(R) equals the free energy of the system, it can be used to compute free energy changes that result from the rearrangement of solutes as well as the forces exerted on the solutes by the solvent. This enables the use of a thermodynamic analysis of water in protein binding sites to inform ligand design. Finally, we discuss related literature and address published concerns regarding the thermodynamic plausibility of a position-dependent free energy density. The theory presented here has applications in theoretical and computational chemistry and may be further generalizable beyond fluids, such as to solids and macromolecules.
Collapse
Affiliation(s)
- Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093, USA
| | - Tom Kurtzman
- PhD Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, 10016, USA; Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, 10468, USA
| |
Collapse
|
2
|
Fischer AL, Tichy A, Kokot J, Hoerschinger VJ, Wild RF, Riccabona JR, Loeffler JR, Waibl F, Quoika PK, Gschwandtner P, Forli S, Ward AB, Liedl KR, Zacharias M, Fernández-Quintero ML. The Role of Force Fields and Water Models in Protein Folding and Unfolding Dynamics. J Chem Theory Comput 2024; 20:2321-2333. [PMID: 38373307 PMCID: PMC10938642 DOI: 10.1021/acs.jctc.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
Protein folding is a fascinating, not fully understood phenomenon in biology. Molecular dynamics (MD) simulations are an invaluable tool to study conformational changes in atomistic detail, including folding and unfolding processes of proteins. However, the accuracy of the conformational ensembles derived from MD simulations inevitably relies on the quality of the underlying force field in combination with the respective water model. Here, we investigate protein folding, unfolding, and misfolding of fast-folding proteins by examining different force fields with their recommended water models, i.e., ff14SB with the TIP3P model and ff19SB with the OPC model. To this end, we generated long conventional MD simulations highlighting the perks and pitfalls of these setups. Using Markov state models, we defined kinetically independent conformational substates and emphasized their distinct characteristics, as well as their corresponding state probabilities. Surprisingly, we found substantial differences in thermodynamics and kinetics of protein folding, depending on the combination of the protein force field and water model, originating primarily from the different water models. These results emphasize the importance of carefully choosing the force field and the respective water model as they determine the accuracy of the observed dynamics of folding events. Thus, the findings support the hypothesis that the water model is at least equally important as the force field and hence needs to be considered in future studies investigating protein dynamics and folding in all areas of biophysics.
Collapse
Affiliation(s)
- Anna-Lena
M. Fischer
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Anna Tichy
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Robert F. Wild
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Patrick K. Quoika
- Center
for Protein Assemblies (CPA), Physics Department, Chair of Theoretical
Biophysics, Technical University of Munich, D-80333 Munich, Germany
| | | | - Stefano Forli
- Department
of Integrative Structural and Computational Biology, Scripps Research Institute, La
Jolla, California 92037, United States
| | - Andrew B. Ward
- Department
of Integrative Structural and Computational Biology, Scripps Research Institute, La
Jolla, California 92037, United States
| | - Klaus R. Liedl
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Martin Zacharias
- Center
for Protein Assemblies (CPA), Physics Department, Chair of Theoretical
Biophysics, Technical University of Munich, D-80333 Munich, Germany
| | - Monica L. Fernández-Quintero
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Wu R, Metternich JB, Kamenik AS, Tiwari P, Harrison JA, Kessen D, Akay H, Benzenberg LR, Chan TWD, Riniker S, Zenobi R. Determining the gas-phase structures of α-helical peptides from shape, microsolvation, and intramolecular distance data. Nat Commun 2023; 14:2913. [PMID: 37217470 PMCID: PMC10203302 DOI: 10.1038/s41467-023-38463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Mass spectrometry is a powerful technique for the structural and functional characterization of biomolecules. However, it remains challenging to accurately gauge the gas-phase structure of biomolecular ions and assess to what extent native-like structures are maintained. Here we propose a synergistic approach which utilizes Förster resonance energy transfer and two types of ion mobility spectrometry (i.e., traveling wave and differential) to provide multiple constraints (i.e., shape and intramolecular distance) for structure-refinement of gas-phase ions. We add microsolvation calculations to assess the interaction sites and energies between the biomolecular ions and gaseous additives. This combined strategy is employed to distinguish conformers and understand the gas-phase structures of two isomeric α-helical peptides that might differ in helicity. Our work allows more stringent structural characterization of biologically relevant molecules (e.g., peptide drugs) and large biomolecular ions than using only a single structural methodology in the gas phase.
Collapse
Affiliation(s)
- Ri Wu
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland
| | - Jonas B Metternich
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland
| | - Anna S Kamenik
- Laboratorium für Physikalische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland
| | - Prince Tiwari
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Julian A Harrison
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland
| | - Dennis Kessen
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland
- University of Münster, MEET Battery Research Center, Corrensstrasse 46, 48149, Münster, Germany
| | - Hasan Akay
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland
| | - Lukas R Benzenberg
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Sereina Riniker
- Laboratorium für Physikalische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland.
| | - Renato Zenobi
- Laboratorium für Organische Chemie, D-CHAB, ETH Zürich, 8093, Zurich, Switzerland.
| |
Collapse
|