Iannella L, Rondoni L. Exact Response Theory for Time-Dependent and Stochastic Perturbations.
ENTROPY (BASEL, SWITZERLAND) 2023;
26:12. [PMID:
38275491 PMCID:
PMC10814237 DOI:
10.3390/e26010012]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
The exact, non perturbative, response theory developed within the field of non-equilibrium molecular dynamics, also known as TTCF (transient time correlation function), applies to quite general dynamical systems. Its key element is called the dissipation function because it represents the power dissipated by external fields acting on the particle system of interest, whose coupling with the environment is given by deterministic thermostats. This theory has been initially developed for time-independent external perturbations, and then it has been extended to time-dependent perturbations. It has also been applied to dynamical systems of different nature, and to oscillator models undergoing phase transitions, which cannot be treated with, e.g., linear response theory. The present work includes time-dependent stochastic perturbations in the theory using the Karhunen-Loève theorem. This leads to three different investigations of a given process. In the first, a single realization of the stochastic coefficients is fixed, and averages are taken only over the initial conditions, as in a deterministic process. In the second, the initial condition is fixed, and averages are taken with respect to the distribution of stochastic coefficients. In the last investigation, one averages over both initial conditions and stochastic coefficients. We conclude by illustrating the applicability of the resulting exact response theory with simple examples.
Collapse