1
|
Ariyarathna IR. Ab initio exploration of low-lying electronic states of linear and bent MNX + (M = Ca, Sr, Ba, Ra; X = O, S, Se, Te, Po) and their origins. J Comput Chem 2024; 45:2530-2538. [PMID: 38981130 DOI: 10.1002/jcc.27456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
High-level multireference and coupled cluster quantum calculations were employed to analyze low-lying electronic states of linear-MNX+ and side-bonded-M[NX]+ (M = Ca, Sr, Ba, Ra; X = O, S, Se, Te, Po) species. Their full potential energy curves (PECs), dissociation energies (Des), geometric parameters, excitation energies (Tes), and harmonic vibrational frequencies (ωes) are reported. The first three chemically bound electronic states of MNX+ and M[NX]+ are 3∑-, 1Δ, 1∑+ and 3A″, 1A', 1A″, respectively. The 3∑-, 1Δ, 1∑+ of MNX+ originate from the M+(2D) + NX(2Π) fragments, whereas the 3A″, 1A', 1A″ states of M[NX]+ dissociate to M+(2S) + NX(2Π) as a result of avoided crossings. The MNX+ and M[NX]+ are real minima on the potential energy surface and their interconversions are possible. The M2+NX-/M2+[NX]- ionic structure is an accurate representation for their low-lying electronic states. The Des of MNX+ species were found to depend on the dipole moment (μ) of the corresponding NX ligands and a linear relationship between these two parameters was observed.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
2
|
Ariyarathna IR. On the ground and excited electronic states of LaCO and AcCO. Phys Chem Chem Phys 2024. [PMID: 39495061 DOI: 10.1039/d4cp03132f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
High-level ab initio electronic structure analysis of correlated lanthanide- and actinide-based species is laborious to perform and consequently limited in the literature. In the present work, the ground and electronically excited states of LaCO and AcCO molecules were explored utilizing the multireference configuration interaction (MRCI), Davidson corrected MRCI (MRCI+Q), and coupled cluster singles doubles and perturbative triples [CCSD(T)] quantum chemical tools conjoined with correlation consistent triple-ζ and quadruple-ζ quality all-electron Douglas-Kroll (DK) basis sets. The full potential energy curves (PECs), dissociation energies (Des), excitation energies (Tes), bond lengths (res), harmonic vibrational frequencies (ωes), and chemical bonding patterns of low-lying electronic states of LaCO and AcCO are introduced. The ground electronic state of LaCO is a 4Σ- (1σ11π2) which is a product of the reaction between excited La(4F) versus CO(X1Σ+), whereas the ground state of AcCO is a 12Π (1σ21π1) deriving from ground state fragments Ac(2D) + CO(X1Σ+). The spin-orbit ground states of LaCO (14Σ-3/2) and AcCO (12Π1/2) bear ∼13 and 5 kcal mol-1D0 values, respectively. At the MRCI level, the spin-orbit curves, the spin-orbit mixing, and the Tes of spin-orbit states of LaCO and AcCO were also analyzed. Lastly, the density functional theory (DFT) calculations were performed applying 16 exchange-correlation functionals that span three rungs of "Jacob's ladder" of density functional approximations (DFAs) to assess DFT errors associated on the De and ionization energy (IE) of LaCO.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
3
|
Ariyarathna IR, Leiding JA, Neukirch AJ, Zammit MC. Ground and Excited Electronic Structure Analysis of FeH with Correlated Wave Function Theory and Density Functional Approximations. J Phys Chem A 2024; 128:9412-9425. [PMID: 39428745 DOI: 10.1021/acs.jpca.4c05313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
FeH is one of the most challenging diatomic molecules to study under electronic structure theory. Here, we have successfully studied 22 electronic states of FeH using ab initio multireference configuration interaction (MRCI), Davidson-corrected MRCI (MRCI+Q), and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] levels of theory. We report their potential energy curves (PECs), excitation energies, dissociation energies, equilibrium electronic configurations, and a series of spectroscopic constants with the use of augmented triple-ζ, quadruple-ζ, and quintuple-ζ quality correlation consistent basis sets. The scalar relativistic effects and active space and core electron correlation contribution on the properties of FeH are also explored. The use of a large CASSCF active space that includes 4s, 4p, 3d, and 4d orbitals of Fe and the 1s of H is critical for producing accurate full PECs with proper dissociations and predicting the exact order of the electronic states. Our findings are in harmony with the experimental results available in the literature and will serve as reference values for future studies of FeH. Furthermore, with the use of PECs, the total internal partition function sum (TIPS) of FeH was calculated across a range of temperatures. Finally, we exploited the single-reference nature of the a6Δ of FeH and its ionized product FeH+ (X5Δ) to evaluate the associated density functional theory (DFT) errors on their dissociation energies and spectroscopic parameters.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jeffery A Leiding
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Amanda J Neukirch
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mark C Zammit
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
4
|
Ariyarathna IR. Wavefunction theory and density functional theory analysis of ground and excited electronic states of TaB and WB. Phys Chem Chem Phys 2024; 26:22858-22869. [PMID: 39109413 DOI: 10.1039/d4cp02202e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Several low-lying electronic states of TaB and WB molecules were studied using ab initio multireference configuration interaction (MRCI), Davidson corrected MRCI (MRCI+Q), and coupled cluster singles doubles and perturbative triples [CCSD(T)] methods. Their full potential energy curves (PECs), equilibrium electron configurations, equilibrium bond distances (res), dissociation energies (Des), excitation energies (Tes), harmonic vibrational frequencies (ωes), and anharmonicities (ωexes) are reported. The MRCI dipole moment curves (DMCs) of the first 5 electronic states of both TaB and WB are also reported and the equilibrium dipole moment (μ) values are compared with the CCSD(T) μ values. The most stable 13Π (1σ22σ23σ11π3) and 15Δ (1σ22σ23σ11π21δ1) electronic states of TaB lie close in energy with ∼62 kcal mol-1De with respect to the Ta(4F) + B(2P) asymptote. However, spin-orbit coupling effects make the 15Δ0+ state the true ground state of TaB. The ground electronic state of WB (16Π) has the 1σ22σ13σ11π31δ2 electron configuration and is followed by the excited 16Σ+ and 14Δ states. Finally, the MRCI De, re, ωe, and ωexe values of the 13Π state of TaB and 16Π and 14Δ states of WB are used to assess the density functional theory (DFT) errors on a series of exchange-correlation functionals that span multiple-rungs of the Jacob's ladder of density functional approximations (DFA).
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
5
|
Ariyarathna IR. Ab initio electronic structure analysis of ground and excited states of HfN 0,. Phys Chem Chem Phys 2024; 26:21099-21109. [PMID: 39058264 DOI: 10.1039/d4cp01847h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
High-level ab initio electronic structure analysis of third-row transition metal (TM)-based diatomic species is challenging and has been perpetually lagging. In this work, fourteen and eighteen electronic states of HfN and HfN+ respectively are studied, employing multireference configuration interaction (MRCI) and coupled cluster singles doubles and perturbative triples [CCSD(T)] theories under larger correlation-consistent basis sets. Their potential energy curves (PECs), energetics, and spectroscopic parameters are reported. Core electron correlation effects on their properties are also investigated. Chemical bonding patterns of several low-lying electronic states are introduced based on the equilibrium electron configurations. The ground state of HfN (X2Σ+) has the 1σ22σ23σ11π4 electronic configuration, and the ionization of the 3σ1 electron produces the ground state of HfN+ (X1Σ+). Ground states of both HfN and HfN+ are triple bonded in nature and bear 124.86 and 109.10 kcal mol-1 binding energies with respect to their ground state fragments. The findings of this work agree well with the limited experimental literature available and provide useful reference values for future experimental analysis of HfN and HfN+.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
6
|
Demetriou C, Tzeliou CE, Androutsopoulos A, Tzeli D. Electronic Structure and Chemical Bonding of the First-, Second-, and Third-Row-Transition-Metal Monoborides: The Formation of Quadruple Bonds in RhB, RuB, and TcB. Molecules 2023; 28:8016. [PMID: 38138506 PMCID: PMC10746003 DOI: 10.3390/molecules28248016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Boron presents an important role in chemistry, biology, and materials science. Diatomic transition-metal borides (MBs) are the building blocks of many complexes and materials, and they present unique electronic structures with interesting and peculiar properties and a variety of bonding schemes which are analyzed here. In the first part of this paper, we present a review on the available experimental and theoretical studies on the first-row-transition-metal borides, i.e., ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, CuB, and ZnB; the second-row-transition-metal borides, i.e., YB, ZrB, NbB, MoB, TcB, RuB, RhB, PdB, AgB, and CdB; and the third-row-transition-metal borides, i.e., LaB, HfB, TaB, WB, ReB, OsB, IrB, PtB, AuB, and HgB. Consequently, in the second part, the second- and third-row MBs are studied via DFT calculations using the B3LYP, TPSSh, and MN15 functionals and, in some cases, via multi-reference methods, MRCISD+Q, in conjunction with the aug-cc-pVQZ-PPM/aug-cc-pVQZB basis sets. Specifically, bond distances, dissociation energies, frequencies, dipole moments, and natural NPA charges are reported. Comparisons between MB molecules along the three rows are presented, and their differences and similarities are analyzed. The bonding of the diatomic borides is also described; it is found that, apart from RhB(X1Σ+), which was just recently found to form quadruple bonds, RuB(X2Δ) and TcB(X3Σ-) also form quadruple σ2σ2π2π2 bonds in their X states. Moreover, to fill the gap existing in the current literature, here, we calculate the TcB molecule.
Collapse
Affiliation(s)
- Constantinos Demetriou
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 84 Athens, Greece; (C.D.); (C.E.T.); (A.A.)
| | - Christina Eleftheria Tzeliou
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 84 Athens, Greece; (C.D.); (C.E.T.); (A.A.)
| | - Alexandros Androutsopoulos
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 84 Athens, Greece; (C.D.); (C.E.T.); (A.A.)
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 84 Athens, Greece; (C.D.); (C.E.T.); (A.A.)
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| |
Collapse
|
7
|
Ariyarathna IR, Cho Y, Duan C, Kulik HJ. Gas-phase and solid-state electronic structure analysis and DFT benchmarking of HfCO. Phys Chem Chem Phys 2023; 25:26632-26639. [PMID: 37767841 DOI: 10.1039/d3cp03550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Ab initio multi-reference configuration interaction (MRCI) and coupled cluster singles doubles and perturbative triples [CCSD(T)] levels of theory were used to study ground and excited electronic states of HfCO. We report potential energy curves, dissociation energies (De), excitation energies, harmonic vibrational frequencies, and chemical bonding patterns of HfCO. The 3Σ- ground state of HfCO has an 1σ22σ21π2 electron configuration and a ∼30 kcal mol-1 dissociation energy with respect to its lowest-energy fragments Hf(3F) + CO(X1Σ+). We further evaluated the De of its isovalent HfCX (X = S, Se, Te, Po) series and observed that they increase linearly from the lighter HfCO to the heavier HfCPo with the dipole moment of the CX ligand. The same linear relationship was observed for TiCX and ZrCX. We utilized the CCSD(T) benchmark values of De, excitation energy, and ionization energy (IE) values to evaluate density functional theory (DFT) errors with 23 exchange-correlation functionals spanning GGA, meta-GGA, global GGA hybrid, meta-GGA hybrid, range-separated hybrid, and double-hybrid functional families. The global GGA hybrid B3LYP and range-separated hybrid ωB97X performed well at representing the ground state properties of HfCO (i.e., De and IE). Finally, we extended our DFT analysis to the interaction of a CO molecule with a Hf surface and observed that the surface chemisorption energy and the gas-phase molecular dissociation energy are very similar for some DFAs but not others, suggesting moderate transferability of the benchmarks on these molecules to the solid state.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Dunning TH, Gordon MS, Xantheas SS. The nature of the chemical bond. J Chem Phys 2023; 158:130401. [PMID: 37031137 DOI: 10.1063/5.0148500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
Affiliation(s)
- Thom H Dunning
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
9
|
Liu Y, Sulaiman HF, Johnson BR, Ma R, Gao Y, Fernando H, Amarasekara A, Ashley-Oyewole A, Fan H, Ingram HN, Briggs JM. QM/MM study of N501 involved intermolecular interaction between SARS-CoV-2 receptor binding domain and antibody of human origin. Comput Biol Chem 2023; 102:107810. [PMID: 36610304 PMCID: PMC9811887 DOI: 10.1016/j.compbiolchem.2023.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Intermolecular interaction between key residue N501 of the epitope on SARS-CoV-2 RBD and screening antibody B38 was studied using the QM/MM and QM approach. The QM/MM optimized geometry shows that angle X-H---Y is 165° for O-H---O between mAb light chain S30 and RBD N501. High level MP2 calculations indicated the interaction between RBD N501 and S30 of B38 Fab light chain provide a relatively strong attractive force of - 3.32 kcal/mol, whereas the hydrogen bond between RBD Q498 and S30 was quantified as 0.10 kcal/mol. The decrease in ESP partial charge on hydrogen atom of hydroxyl group on S30 drops from 0.38 a.u. to 0.31 a.u., exhibiting the sharing of 0.07 a.u. from the lone pair electron oxygen of N501 due to hydrogen bond formation. The NBO occupancy of hydrogen atom also decreases from 25.79 % to 22.93 % in the hydroxyl H-O NBO bond of S30. However, the minor change of NBO hybridization of hydroxyl oxygen of S30 from sp3.00 to sp3.05 implies the rigidity of hydrogen bond tetrahedral geometry in the relative dynamic protein complex. The O-H---O angle is 165° which is close but not exactly linear. The structural requirement for sp3 hybridization of oxygen for hydroxyl group on S30 and dimension of protein likely prevent O-H---O from adopting linear geometry. The hydrogen bond strengths were also calculated using a variety of DFT methods, and the result of - 3.33 kcal/mol from the M06L method is the closest to that of the MP2 calculation. Results of this work may aid in the COVID-19 vaccine and drug screening.
Collapse
Affiliation(s)
- Yuemin Liu
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America,Department of Chemistry, Rice University, Houston, TX 77005, the United States of America,Corresponding author at: Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Hana F. Sulaiman
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Bruce R. Johnson
- Department of Chemistry, Rice University, Houston, TX 77005, the United States of America
| | - Rulong Ma
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, the United States of America
| | - Yunxiang Gao
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Ananda Amarasekara
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Andrea Ashley-Oyewole
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - Huajun Fan
- College of Chemical Engineering, Sichuan University Science and Engineering, Zigong, Sichuan 643000, PR China
| | - Heaven N. Ingram
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, the United States of America
| | - James M. Briggs
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, the United States of America
| |
Collapse
|