1
|
Song Y, Zhang N, Lei Y, Guo Y, Liu W. QUEST#4X: An Extension of QUEST#4 for Benchmarking Multireference Wave Function Methods. J Chem Theory Comput 2025. [PMID: 39874298 DOI: 10.1021/acs.jctc.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Given a number of data sets for evaluating the performance of single reference methods for the low-lying excited states of closed-shell molecules, a comprehensive data set for assessing the performance of multireference methods for the low-lying excited states of open-shell systems is still lacking. For this reason, we propose an extension (QUEST#4X) of the radical subset of QUEST#4 (J. Chem. Theory Comput. 2020, 16, 3720) to cover 110 doublet and 39 quartet excited states. Near-exact results obtained by iterative configuration interaction with selection and second-order perturbation correction (iCIPT2) are taken as benchmark to calibrate static-dynamic-static configuration interaction (SDSCI) and static-dynamic-static second-order perturbation theory (SDSPT2), which are minimal MRCI and CI-like perturbation theory, respectively. It is found that SDSCI is very close in accuracy to internally contracted multireference configuration interaction with singles and doubles (ic-MRCISD), although its computational cost is just that of one iteration of the latter. Unlike most variants of MRPT2, SDSPT2 treats single and multiple states in the same way and performs similarly to multistate n-electron valence second-order perturbation theory (MS-NEVPT2). These findings put SDSCI and SDSPT2 on a firm basis.
Collapse
Affiliation(s)
- Yangyang Song
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Ning Zhang
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Yang Guo
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Nakamura T, Schoendorff G, Yang DS, Gordon MS. Systematic Investigation of Electronic States and Bond Properties of LnO, LnO +, LnS, and LnS + (Ln = La-Lu) by Spin-Orbit Multiconfiguration Perturbation Theory. J Chem Theory Comput 2025; 21:267-282. [PMID: 39693604 DOI: 10.1021/acs.jctc.4c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The electronic structures of lanthanide monoxides (LnO/LnO+) and monosulfides (LnS/LnS+) for all lanthanide series elements (Ln = La-Lu) have been systematically analyzed with sophisticated quantum chemical calculations. The ground electronic configuration has been determined to be Ln 4fn6s1 or 4fn+1 for the neutral molecules and Ln 4fn for the cations. The low-lying energy states resulting from spin-orbit coupling and ligand field effects have been resolved using spin-orbit multiconfiguration quasi-degenerate second-order perturbation theory calculations. The ionization energies of LnO (5.20-7.06 eV) are about 0.3-2.2 eV lower than those of LnS (5.54-9.22 eV) due to the difference in the Ln 6s and 4f orbital energies from which an electron is removed during the ionization process. The bond dissociation energies (BDEs) have been computed by the state-averaged general multiconfigurational perturbation theory and the completely renormalized coupled-cluster [CR-CC(2,3)] methods. The BDEs are highly dependent on the lanthanide elements as several factors of the lanthanides affect the bond dissociation. The calculated bond lengths and energies agree well with available experimental values and are systematically predicted for the series of lanthanide monoxides and monosulfides where experimental values are not available. Furthermore, the LS terms of low-lying energy states and their corresponding bond properties have been clarified in detail to systematize the similarities and differences of the lanthanide compounds.
Collapse
Affiliation(s)
- Taiji Nakamura
- Department of Chemistry and Ames National Laboratory, Iowa State University, Ames, Iowa 50011-3111, United States
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - George Schoendorff
- Department of Chemistry and Ames National Laboratory, Iowa State University, Ames, Iowa 50011-3111, United States
- Propellants Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Mark S Gordon
- Department of Chemistry and Ames National Laboratory, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
3
|
Almeida NMS, Welch BK, North SC, Wilson AK. Unraveling the electronic structure of LuH, LuN, and LuNH: building blocks of new materials. Phys Chem Chem Phys 2024; 26:10427-10438. [PMID: 38502323 DOI: 10.1039/d4cp00533c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Advances in superconductor technology have been pursued for decades, moving towards room temperature models, such as a postulated nitrogen-doped lutetium hydride network. While experimental observations have been contradictory, insight into the building blocks of potential new superconductor materials can be gained theoretically, unravelling the fascinating electronic structure of these compounds at a molecular level. Here, the fundamental building blocks of lutetium materials (LuH, LuN, and LuNH) have been examined. The structures, spectroscopic constants for the ground and excited states, and the potential energy curves have been obtained for these species using complete active self-consistent field (CASSCF) and multireference configuration interaction with Davidson's correction (MRCI+Q) methods. For LuNH, the energetic properties of its isomers are determined. The bond dissociation energies of the three building blocks are calculated with the state-of-the-art f-block ab initio correlation consistent composite approach (f-ccCA) and the high accuracy extrapolated ab initio thermochemistry (HEAT) scheme. As well, an analysis of different formation pathways of LuNH has been provided.
Collapse
Affiliation(s)
- Nuno M S Almeida
- Michigan State University, Department of Chemistry, East Lansing, MI 48864, USA.
| | - Bradley K Welch
- Michigan State University, Department of Chemistry, East Lansing, MI 48864, USA.
| | - Sasha C North
- Michigan State University, Department of Chemistry, East Lansing, MI 48864, USA.
| | - Angela K Wilson
- Michigan State University, Department of Chemistry, East Lansing, MI 48864, USA.
| |
Collapse
|
4
|
Merriles DM, Barrera-Casas Y, Knapp AS, Morse MD. Adiabatic ionization energies of RuC, RhC, OsC, IrC, and PtC. J Chem Phys 2024; 160:084303. [PMID: 38391018 DOI: 10.1063/5.0194848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The ionization energies (IEs) of RuC, RhC, OsC, IrC, and PtC are assigned by the measurement of their two-photon ionization thresholds. Although late transition metal-carbon bonds are of major importance in organometallic chemistry and catalysis, accurate and precise fundamental thermochemical data on these chemical bonds are mainly lacking in the literature. Based on their two-photon ionization thresholds, in this work, we assign IE(RuC) = 7.439(40) eV, IE(RhC) = 7.458(32) eV, IE(OsC) = 8.647(25) eV, IE(IrC) = 8.933(74) eV, and IE(PtC) = 9.397(32) eV. These experimentally derived IEs are further confirmed through quantum chemical calculations using coupled-cluster single double perturbative triple methods that are extrapolated to the complete basis set limit using a three-parameter mixed Gaussian/exponential extrapolation scheme and corrected for spin-orbit effects using a semiempirical method. The electronic structure and chemical bonding of these MC species are discussed in the context of these ionization energy measurements. The IEs of RuC, RhC, OsC, and IrC closely mirror the IEs of the corresponding transition metal atoms, suggesting that for these species, the (n + 1)s electrons of the transition metals are not significantly involved in chemical bonding.
Collapse
Affiliation(s)
- Dakota M Merriles
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | - Annie S Knapp
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Michael D Morse
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Merriles DM, London A, Tieu E, Nielson C, Morse MD. Probing the Chemical Bond between Lanthanides and Carbon: CeC, PrC, NdC, LuC, and TmC 2. Inorg Chem 2023. [PMID: 37285469 DOI: 10.1021/acs.inorgchem.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Resonant two-photon ionization experiments have been conducted to probe the bond dissociation energy (BDE) of the lanthanide-carbon bond, allowing the BDEs of CeC, PrC, NdC, LuC, and Tm-C2 to be measured to high precision. Values of D0(CeC) = 4.893(3) eV, D0(PrC) = 4.052(3) eV, D0(NdC) = 3.596(3) eV, D0(LuC) = 3.685(4) eV, and D0(Tm-C2) = 4.797(6) eV are obtained. Additionally, the adiabatic ionization energy of LuC was measured, giving IE(LuC) = 7.05(3) eV. The electronic structure of these species, along with the previously measured LaC, has been further investigated using quantum chemical calculations. Despite LaC, CeC, PrC, and NdC having ground electronic configurations that differ only in the number of 4f electrons present and have virtually identical bond orders, bond lengths, fundamental stretching frequencies, and metallic oxidation states, a peculiar 1.30 eV range in bond dissociation energies exists for these molecules. A natural bond orbital analysis shows that the metal atoms in these molecules have a natural charge of +1 with a 5d2 4fn 6s0 configuration while the carbon atom has a natural charge of -1 and a 2p3 configuration. The diabatic bond dissociation energies, calculated with respect to the lowest energy level of this separated ion configuration, show a greatly reduced energy range of 0.32 eV, with the diabatic BDE decreasing as the amount of 4f character in the σ-bond increases. Thus, the wide range of measured BDEs for these molecules is a consequence of the variation in atomic promotion energies at the separated ion limit. TmC2 has a smaller BDE than the other LnC2 molecules, due to the tiny amount of 5d participation in the valence molecular orbitals.
Collapse
Affiliation(s)
- Dakota M Merriles
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Anthony London
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Erick Tieu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christopher Nielson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michael D Morse
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Dunning TH, Gordon MS, Xantheas SS. The nature of the chemical bond. J Chem Phys 2023; 158:130401. [PMID: 37031137 DOI: 10.1063/5.0148500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
Affiliation(s)
- Thom H Dunning
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
7
|
North S, Almeida NMS, Melin TL, Wilson AK. Multireference Wavefunction-Based Investigation of the Ground and Excited States of LrF and LrO. J Phys Chem A 2023; 127:107-121. [PMID: 36596472 PMCID: PMC9841984 DOI: 10.1021/acs.jpca.2c06968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Indexed: 01/05/2023]
Abstract
Complete active space self-consistent field (CASSCF) and multireference configuration interaction with Davidson correction (MRCI+Q) calculations have been carried out for lawrencium fluoride (LrF) and lawrencium oxide (LrO) molecules, detailing 19 and 20 electronic states for LrF and LrO, respectively. For LrF, two dissociation channels were considered, Lr(2P)+F(2P) and Lr(2D)+F(2P). However, due to the more complex electronic manifold of LrO, three dissociation channels were computed: Lr(2P)+O(3P), Lr(2D)+O(3P), and Lr(2P)+O(1D). In addition, equilibrium bond lengths, harmonic vibrational frequencies ωe, anharmonicity constants ωeχe, ΔG1/2 values, and excitation energies Te for the ground and several excited electronic states were calculated for both molecules, for the first time. Bond dissociation energies (BDEs) were calculated for LrF and LrO using several different levels of theory: unrestricted coupled-cluster with single, double, and perturbative triple excitations (UCCSD(T)), density functional theory (B3LYP, TPSS, M06-L, and PBE), and the correlation-consistent composite approach developed for f-elements (f-ccCA).
Collapse
Affiliation(s)
- Sasha
C. North
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Nuno M. S. Almeida
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Timothé
R. L. Melin
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Angela K. Wilson
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| |
Collapse
|
8
|
Zhang C, Cheng L. Route to Chemical Accuracy for Computational Uranium Thermochemistry. J Chem Theory Comput 2022; 18:6732-6741. [PMID: 36206308 DOI: 10.1021/acs.jctc.2c00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benchmark spinor-based relativistic coupled-cluster calculations for the ionization energies of the uranium atom, the uranium monoxide molecule (UO), and the uranium dioxide molecule (UO2) and for the bond dissociation energies of UO and UO2 are reported. The accuracy of these calculations in the treatments of relativistic, electron-correlation, and basis-set effects is analyzed. The intrinsic convergence of the computed results and the favorable comparison with the experimental values demonstrate the unique applicability of the spinor representation of quantum-chemical methods to open-shell uranium-containing atomic and molecular species with uranium oxidation states ranging from U(0) to U(V).
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|