1
|
Gao Y, Lei X, Cheng R, Lin S, Luo Z. Enhanced stability of the Nb 3O 6- and Nb 4O 6+ clusters: the nxcπ rule versus superatomic nature. Phys Chem Chem Phys 2024; 26:28019-28024. [PMID: 39484736 DOI: 10.1039/d4cp03279a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This study examines the chemical reactivity of niobium clusters with carbon dioxide (CO2), with an emphasis on the analysis of the ensuing products Nb4O6+ and Nb3O6-, which show up in the cationic and anionic mass spectra, respectively. Using density functional theory (DFT) calculations, we demonstrate the reactivity of the Nbn± clusters with CO2 and reveal distinct stabilization mechanisms for the two prominent products. The stability of Nb3O6- is determined by the existence of ten π bonds pertaining to π-electron delocalization, which conforms to the nxcπ electron configuration model. Despite having only a one-atom distinction, Nb4O6+ exhibits superatomic electron shells embodying superatom stability. The divergent stabilizing mechanisms found in Nb4O6+ and Nb3O6- illustrate the intricate nature of cluster chemistry and the significance of electronic structure in governing cluster stability and reactivity.
Collapse
Affiliation(s)
- Yifan Gao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ran Cheng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiquan Lin
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Gan W, Geng L, Huang B, Hansen K, Luo Z. Dehydrogenation of diborane on small Nb n+ clusters. Phys Chem Chem Phys 2024; 26:9586-9592. [PMID: 38465400 DOI: 10.1039/d3cp06135c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The reactivity of Nbn+ (1 ≤ n ≤ 21) clusters with B2H6 is studied by using a self-developed multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). The Nbn+ clusters were generated by a magnetron sputtering source and reacted with the B2H6 gas under fully thermalized conditions in the downstream flow tube where the reaction time was accurately controlled and adjustable. The complete and partial dehydrogenation products NbnB1-4+ and NbnB1-4H1,2,4+ were detected, indicative of the removal of H2 and likely BHx moieties. Interestingly, these NbnB1-4+ and NbnB1-4H1,2,4+ products are limited to 3 ≤ n ≤ 6, suggesting that the small Nbn+ clusters are relatively more reactive than the larger Nbn>6+ clusters under the same conditions. By varying the B2H6 gas concentrations and the reactant doses introduced into the flow tube, and by changing the reaction time, we performed a detailed analysis of the reaction dynamics in combination with the DFT-calculated thermodynamics. It is demonstrated that the lack of cooperative active sites on the Nb1+ cations accounts for the weakened dehydrogenation efficiency. Nb2+ forms partial dehydrogenation products at a faster rate. In contrast, the Nbn>6+ clusters are subject to more flexible vibrational relaxation which disperse the energy gain of B2H6-adsorption and thus are unable to overcome the energy barriers for subsequent hydrogen atom transfer and H2 release.
Collapse
Affiliation(s)
- Wen Gan
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Lijun Geng
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Benben Huang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Klavs Hansen
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
4
|
Salthammer T, Hohm U, Stahn M, Grimme S. Proton-transfer rate constants for the determination of organic indoor air pollutants by online mass spectrometry. RSC Adv 2023; 13:17856-17868. [PMID: 37323443 PMCID: PMC10262294 DOI: 10.1039/d3ra01705b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Proton transfer reaction mass spectrometry (PTR-MS) has become an indispensable analytical tool for indoor related sciences. With high-resolution techniques not only is the online monitoring of the selected ions in the gas phase possible, but also, with some limitations, the identification of substance mixtures without chromatographic separation. The quantification is carried out with the help of kinetic laws, which require knowledge of the conditions in the reaction chamber, the reduced ion moblilities and the reaction rate constant kPT under these conditions. Ion-dipole collision theory can be used to calculate kPT. One approach is an extension of Langevin's equation and is known as average dipole orientation (ADO). In a further development, the analytical solution of ADO was replaced by trajectory analysis, which resulted in capture theory. The calculations according to ADO and capture theory require precise knowledge of the dipole moment and the polarizability of the respective target molecule. However, for many relevant indoor related substances, these data are insufficiently known or not known at all. Consequently, the dipole moment μD and polarizability α of 114 organic compounds that are frequently found in indoor air had to be determined using advanced quantum mechanical methods. This required the development of an automated workflow that performs conformer analysis before computing μD and α using density functional theory (DFT). Then the reaction rate constants with the H3O+ ion are calculated according to the ADO theory (kADO), capture theory (kcap) and advanced capture theory for different conditions in the reaction chamber. The kinetic parameters are evaluated with regard to their plausibility and critically discussed for their applicability in PTR-MS measurements.
Collapse
Affiliation(s)
- Tunga Salthammer
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry 38108 Braunschweig Germany
| | - Uwe Hohm
- Institute of Physical and Theoretical Chemistry, University of Braunschweig - Institute of Technology 38106 Braunschweig Germany
| | - Marcel Stahn
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn 53115 Bonn Germany
| |
Collapse
|
5
|
Gan W, Huang B, Cui C, Hansen K, Luo Z. Weak Interactions Initiate C-H and C-C Bond Dissociation of Ethane on Nb n + Clusters. Chemphyschem 2023; 24:e202200530. [PMID: 36807961 DOI: 10.1002/cphc.202200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
The conversion of ethane into value-added chemicals under ambient conditions has attracted much attention but the mechanisms remain not fully understood. Here we report a study on the reaction of ethane with thermalized Nbn + clusters based on a multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). It is found that ethane reacts with Nbn + clusters to form both products of dehydrogenation and methane-removal (odd-carbon products). Combined with density functional theory (DFT) calculations, we studied the reaction mechanisms of the C-C bond activation and C-H bond cleavage on the Nbn + clusters. It is unveiled that hydrogen atom transfer (HAT) initiates the reaction process, giving rise to the formation of Nb-C bonds and an elongated C-C distance in the HNbn + CH2 CH3 motif. Subsequent reactions allow for C-C bond activation and a competitive HAT process which is associated with CH4 removal or H2 release, resulting in the production of the observed carbides.
Collapse
Affiliation(s)
- Wen Gan
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of, Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Benben Huang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of, Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of, Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Klavs Hansen
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of, Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|