1
|
Stuyver T. TS-tools: Rapid and automated localization of transition states based on a textual reaction SMILES input. J Comput Chem 2024; 45:2308-2317. [PMID: 38850166 DOI: 10.1002/jcc.27374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/10/2024]
Abstract
Here, TS-tools is presented, a Python package facilitating the automated localization of transition states (TS) based on a textual reaction SMILES input. TS searches can either be performed at xTB or DFT level of theory, with the former yielding guesses at marginal computational cost, and the latter directly yielding accurate structures at greater expense. On a benchmarking dataset of mono- and bimolecular reactions, TS-tools reaches an excellent success rate of 95% already at xTB level of theory. For tri- and multimolecular reaction pathways - which are typically not benchmarked when developing new automated TS search approaches, yet are relevant for various types of reactivity, cf. solvent- and autocatalysis and enzymatic reactivity - TS-tools retains its ability to identify TS geometries, though a DFT treatment becomes essential in many cases. Throughout the presented applications, a particular emphasis is placed on solvation-induced mechanistic changes, another issue that received limited attention in the automated TS search literature so far.
Collapse
Affiliation(s)
- Thijs Stuyver
- Ecole Nationale Supérieure de Chimie de Paris, Université PSL, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France
| |
Collapse
|
2
|
Vadaddi SM, Zhao Q, Savoie BM. Graph to Activation Energy Models Easily Reach Irreducible Errors but Show Limited Transferability. J Phys Chem A 2024; 128:2543-2555. [PMID: 38517281 DOI: 10.1021/acs.jpca.3c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Activation energy characterization of competing reactions is a costly but crucial step for understanding the kinetic relevance of distinct reaction pathways, product yields, and myriad other properties of reacting systems. The standard methodology for activation energy characterization has historically been a transition state search using the highest level of theory that can be afforded. However, recently, several groups have popularized the idea of predicting activation energies directly based on nothing more than the reactant and product graphs, a sufficiently complex neural network, and a broad enough data set. Here, we have revisited this task using the recently developed Reaction Graph Depth 1 (RGD1) transition state data set and several newly developed graph attention architectures. All of these new architectures achieve similar state-of-the-art results of ∼4 kcal/mol mean absolute error on withheld testing sets of reactions but poor performance on external testing sets composed of reactions with differing mechanisms, reaction molecularity, or reactant size distribution. Limited transferability is also shown to be shared by other contemporary graph to activation energy architectures through a series of case studies. We conclude that an array of standard graph architectures can already achieve results comparable to the irreducible error of available reaction data sets but that out-of-distribution performance remains poor.
Collapse
Affiliation(s)
- Sai Mahit Vadaddi
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Qiyuan Zhao
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
3
|
Xu W, Zhao Y, Chen J, Wan Z, Yan D, Zhang X, Zhang R. A Q-learning method based on coarse-to-fine potential energy surface for locating transition state and reaction pathway. J Comput Chem 2024; 45:487-497. [PMID: 37966714 DOI: 10.1002/jcc.27259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Transition state (TS) on the potential energy surface (PES) plays a key role in determining the kinetics and thermodynamics of chemical reactions. Inspired by the fact that the dynamics of complex systems are always driven by rare but significant transition events, we herein propose a TS search method in accordance with the Q-learning algorithm. Appropriate reward functions are set for a given PES to optimize the reaction pathway through continuous trial and error, and then the TS can be obtained from the optimized reaction pathway. The validity of this Q-learning method with reasonable settings of Q-value table including actions, states, learning rate, greedy rate, discount rate, and so on, is exemplified in 2 two-dimensional potential functions. In the applications of the Q-learning method to two chemical reactions, it is demonstrated that the Q-learning method can predict consistent TS and reaction pathway with those by ab initio calculations. Notably, the PES must be well prepared before using the Q-learning method, and a coarse-to-fine PES scanning scheme is thus introduced to save the computational time while maintaining the accuracy of the Q-learning prediction. This work offers a simple and reliable Q-learning method to search for all possible TS and reaction pathway of a chemical reaction, which may be a new option for effectively exploring the PES in an extensive search manner.
Collapse
Affiliation(s)
- Wenjun Xu
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Yanling Zhao
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Jialu Chen
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Zhongyu Wan
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Dadong Yan
- Department of Physics, Beijing Normal University, Beijing, China
| | - Xinghua Zhang
- School of Science, Beijing Jiaotong University, Beijing, China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Vijay S, Venetos MC, Spotte-Smith EWC, Kaplan AD, Wen M, Persson KA. CoeffNet: predicting activation barriers through a chemically-interpretable, equivariant and physically constrained graph neural network. Chem Sci 2024; 15:2923-2936. [PMID: 38404391 PMCID: PMC10882514 DOI: 10.1039/d3sc04411d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024] Open
Abstract
Activation barriers of elementary reactions are essential to predict molecular reaction mechanisms and kinetics. However, computing these energy barriers by identifying transition states with electronic structure methods (e.g., density functional theory) can be time-consuming and computationally expensive. In this work, we introduce CoeffNet, an equivariant graph neural network that predicts activation barriers using coefficients of any frontier molecular orbital (such as the highest occupied molecular orbital) of reactant and product complexes as graph node features. We show that using coefficients as features offer several advantages, such as chemical interpretability and physical constraints on the network's behaviour and numerical range. Model outputs are either activation barriers or coefficients of the chosen molecular orbital of the transition state; the latter quantity allows us to interpret the results of the neural network through chemical intuition. We test CoeffNet on a dataset of SN2 reactions as a proof-of-concept and show that the activation barriers are predicted with a mean absolute error of less than 0.025 eV. The highest occupied molecular orbital of the transition state is visualized and the distribution of the orbital densities of the transition states is described for a few prototype SN2 reactions.
Collapse
Affiliation(s)
- Sudarshan Vijay
- Department of Materials Science and Engineering, University of California, Berkeley 210 Hearst Memorial Mining Building Berkeley CA 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Maxwell C Venetos
- Department of Materials Science and Engineering, University of California, Berkeley 210 Hearst Memorial Mining Building Berkeley CA 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Evan Walter Clark Spotte-Smith
- Department of Materials Science and Engineering, University of California, Berkeley 210 Hearst Memorial Mining Building Berkeley CA 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Aaron D Kaplan
- Materials Science Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Mingjian Wen
- Department of Chemical and Biomolecular Engineering, University of Houston Houston Texas 77204 USA
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California, Berkeley 210 Hearst Memorial Mining Building Berkeley CA 94720 USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| |
Collapse
|
5
|
Domenichini G, Dellago C. Molecular Hessian matrices from a machine learning random forest regression algorithm. J Chem Phys 2023; 159:194111. [PMID: 37982481 DOI: 10.1063/5.0169384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
In this article, we present a machine learning model to obtain fast and accurate estimates of the molecular Hessian matrix. In this model, based on a random forest, the second derivatives of the energy with respect to redundant internal coordinates are learned individually. The internal coordinates together with their specific representation guarantee rotational and translational invariance. The model is trained on a subset of the QM7 dataset but is shown to be applicable to larger molecules picked from the QM9 dataset. From the predicted Hessian, it is also possible to obtain reasonable estimates of the vibrational frequencies, normal modes, and zero point energies of the molecules.
Collapse
Affiliation(s)
- Giorgio Domenichini
- Faculty of Physics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria
| | - Christoph Dellago
- Faculty of Physics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria
| |
Collapse
|
6
|
Chen Y, Ou Y, Zheng P, Huang Y, Ge F, Dral PO. Benchmark of general-purpose machine learning-based quantum mechanical method AIQM1 on reaction barrier heights. J Chem Phys 2023; 158:074103. [PMID: 36813722 DOI: 10.1063/5.0137101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Artificial intelligence-enhanced quantum mechanical method 1 (AIQM1) is a general-purpose method that was shown to achieve high accuracy for many applications with a speed close to its baseline semiempirical quantum mechanical (SQM) method ODM2*. Here, we evaluate the hitherto unknown performance of out-of-the-box AIQM1 without any refitting for reaction barrier heights on eight datasets, including a total of ∼24 thousand reactions. This evaluation shows that AIQM1's accuracy strongly depends on the type of transition state and ranges from excellent for rotation barriers to poor for, e.g., pericyclic reactions. AIQM1 clearly outperforms its baseline ODM2* method and, even more so, a popular universal potential, ANI-1ccx. Overall, however, AIQM1 accuracy largely remains similar to SQM methods (and B3LYP/6-31G* for most reaction types) suggesting that it is desirable to focus on improving AIQM1 performance for barrier heights in the future. We also show that the built-in uncertainty quantification helps in identifying confident predictions. The accuracy of confident AIQM1 predictions is approaching the level of popular density functional theory methods for most reaction types. Encouragingly, AIQM1 is rather robust for transition state optimizations, even for the type of reactions it struggles with the most. Single-point calculations with high-level methods on AIQM1-optimized geometries can be used to significantly improve barrier heights, which cannot be said for its baseline ODM2* method.
Collapse
Affiliation(s)
- Yuxinxin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanchi Ou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peikun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaohuang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fuchun Ge
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|