1
|
Meyer KAE, Garand E. The impact of solvation on the structure and electric field strength in Li +GlyGly complexes. Phys Chem Chem Phys 2024; 26:12406-12421. [PMID: 38623633 DOI: 10.1039/d3cp06264c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
To scrutinise the impact of electric fields on the structure and vibrations of biomolecules in the presence of water, we study the sequential solvation of lithium diglycine up to three water molecules with cryogenic infrared action spectroscopy. Conformer-specific IR-IR spectroscopy and H2O/D2O isotopic substitution experiments provide most of the information required to decipher the structure of the observed conformers. Additional confirmation is provided by scaled harmonic vibrational frequency calculations using MP2 and DFT. The first water molecule is shown to bind to the Li+ ion, which weakens the electric field experienced by the peptide and as a consequence, also the strength of an internal NH⋯NH2 hydrogen bond in the diglycine backbone. The strength of this hydrogen bond decreases approximately linearly with the number of water molecules as a result of the decreasing electric field strength and coincides with an increase in the number of conformers observed in our spectra. The addition of two water molecules is already sufficient to change the preferred conformation of the peptide backbone, allowing for Li+ coordination to the lone pair of the terminal amine group.
Collapse
Affiliation(s)
- Katharina A E Meyer
- University of Wisconsin-Madison, Department of Chemistry, 1101 University Ave, Madison, WI 53706, USA.
| | - Etienne Garand
- University of Wisconsin-Madison, Department of Chemistry, 1101 University Ave, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Hirata K, Akasaka K, Dopfer O, Ishiuchi SI, Fujii M. Transition from vehicle to Grotthuss proton transfer in a nanosized flask: cryogenic ion spectroscopy of protonated p-aminobenzoic acid solvated with D 2O. Chem Sci 2024; 15:2725-2730. [PMID: 38404372 PMCID: PMC10882521 DOI: 10.1039/d3sc05455a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Proton transfer (PT) is one of the most ubiquitous reactions in chemistry and life science. The unique nature of PT has been rationalized not by the transport of a solvated proton (vehicle mechanism) but by the Grotthuss mechanism in which a proton is transported to the nearest proton acceptor along a hydrogen-bonded network. However, clear experimental evidence of the Grotthuss mechanism has not been reported yet. Herein we show by infrared spectroscopy that a vehicle-type PT occurs in the penta- and hexahydrated clusters of protonated p-aminobenzoic acid, while Grotthuss-type PT is observed in heptahydrated clusters, indicating a change in the PT mechanism depending on the degree of hydration. These findings emphasize the importance of the usually ignored vehicle mechanism as well as the degree of hydration. It highlights the possibility of controlling the PT mechanism by the number of water molecules in chemical and biological environments.
Collapse
Affiliation(s)
- Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Kyota Akasaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Otto Dopfer
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Institut für Optik und Atomare Physik, Technische Universität Berlin Hardenbergstrasse 36 10623 Berlin Germany
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
3
|
Limbach MN, Do TD. Solvent-Free Nuclear Magnetic Resonance Spectroscopy of Charged Molecules. J Phys Chem A 2023; 127:9149-9157. [PMID: 37861438 DOI: 10.1021/acs.jpca.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy of small molecules protonated in a solvent-free environment was successfully demonstrated. The method is referred to as solvent-free protonation NMR (SoF-NMR). Leveraging matrix-assisted ionization (MAI), we generated protonated species of aniline, 4-chloroaniline, 4-aminobiphenyl, and benzocaine for NMR analysis under mild pressure and temperature conditions. The SoF-NMR spectra were compared to traditional solution NMR spectra, and the shift changes in nuclear spin resonance frequencies verify that these small molecules are protonated by 3-nitrobenzonitrile (3-NBN). As the sample pressure decreased, new spectral features appeared, indicating the presence of differently charged species. Several advantages of SoF-NMR are highlighted, such as the elimination of H/D exchange in labile protons, resulting in the precise observation of protons that are otherwise transient in solution. Notably, the data on benzocaine show evidence of neutral, N-protonated, and O-protonated species all in the same spectrum. SoF-NMR eliminates the solvent effects and interactions that can hinder important spectral features. Optimizing SoF-NMR will result in more cost-effective and efficient NMR experimentation to monitor high-temperature, solvent-free reactions. SoF-NMR has a viable future application for studying exchangeable protons, intermediates, and products in gas-phase chemistry.
Collapse
Affiliation(s)
- Miranda N Limbach
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Ohshimo K, Sato R, Takasaki Y, Tsunoda K, Ito R, Kanno M, Misaizu F. Highly Efficient Intramolecular Proton Transfer in p-Aminobenzoic Acid by a Single Ammonia Molecule as a Vehicle. J Phys Chem Lett 2023; 14:8281-8288. [PMID: 37677142 DOI: 10.1021/acs.jpclett.3c01996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Proton transfer is classified into two mechanisms: the Grotthuss (proton-relay) and vehicle mechanisms. It has been well studied on gas-phase proton transfer by a proton relay involving multiple molecules. However, a vehicle mechanism in which a single molecule transports a proton has rarely been reported. Here, we have obtained clear evidence that the proton transfers efficiently between the two protonation sites in protonated p-aminobenzoic acid (PABA·H+) by a single ammonia molecule as a vehicle. The gaseous PABA·H+ ions were reacted with NH3 or ND3 under single-collision conditions in a cold ion trap, and the proton-transferred ions were identified by cryogenic ion mobility-mass spectrometry. A reaction intermediate PABA·H+·NH3 was also detected for the first time. The reaction pathway search calculations and ab initio molecular dynamics simulations supported the present experimental finding that intramolecular proton transfer occurs very efficiently by the vehicle mechanism.
Collapse
Affiliation(s)
- Keijiro Ohshimo
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ryosuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuya Takasaki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kengo Tsunoda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ryosuke Ito
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Khuu T, Schleif T, Mohamed A, Mitra S, Johnson MA, Valdiviezo J, Heindel JP, Head-Gordon T. Intra-cluster Charge Migration upon Hydration of Protonated Formic Acid Revealed by Anharmonic Analysis of Cold Ion Vibrational Spectra. J Phys Chem A 2023; 127:7501-7509. [PMID: 37669457 DOI: 10.1021/acs.jpca.3c03971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The rates of many chemical reactions are accelerated when carried out in micron-sized droplets, but the molecular origin of the rate acceleration remains unclear. One example is the condensation reaction of 1,2-diaminobenzene with formic acid to yield benzimidazole. The observed rate enhancements have been rationalized by invoking enhanced acidity at the surface of methanol solvent droplets with low water content to enable protonation of formic acid to generate a cationic species (protonated formic acid or PFA) formed by attachment of a proton to the neutral acid. Because PFA is the key feature in this reaction mechanism, vibrational spectra of cryogenically cooled, microhydrated PFA·(H2O)n=1-6 were acquired to determine how the extent of charge localization depends on the degree of hydration. Analysis of these highly anharmonic spectra with path integral ab initio molecular dynamics simulations reveals the gradual displacement of the excess proton onto the water network in the microhydration regime at low temperatures with n = 3 as the tipping point for intra-cluster proton transfer.
Collapse
Affiliation(s)
- Thien Khuu
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Tim Schleif
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Ahmed Mohamed
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Sayoni Mitra
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Jesús Valdiviezo
- Pitzer Theory Center, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joseph P Heindel
- Pitzer Theory Center, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Pitzer Theory Center, Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Akasaka K, Hirata K, Haddad F, Dopfer O, Ishiuchi SI, Fujii M. Hydration-induced protomer switching in p-aminobenzoic acid studied by cold double ion trap infrared spectroscopy. Phys Chem Chem Phys 2023; 25:4481-4488. [PMID: 36514975 DOI: 10.1039/d2cp04497h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Para-Aminobenzoic acid (PABA) is a benchmark molecule to study solvent-induced proton site switching. Protonation of the carboxy and amino groups of PABA generates O- and N-protomers of PABAH+, respectively. Ion mobility mass spectrometry (IMS) and infrared photodissociation (IRPD) studies have claimed that the O-protomer most stable in the gas phase is converted to the N-protomer most stable in solution upon hydration with six water molecules in the gas-phase cluster. However, the threshold size has remained ambiguous because the arrival time distributions in the IMS experiments exhibit multiple peaks. On the other hand, IRPD spectroscopy could not detect the N-protomer for smaller hydrated clusters because of broad background due to annealing required to reduce kinetic trapping. Herein, we report the threshold size for O → N protomer switching without ambiguity using IR spectroscopy in a double ion trap spectrometer from 1300 to 1800 cm-1. The pure O-protomer is prepared by electrospray, and size-specific hydrated clusters are formed in a reaction ion trap. The resulting clusters are transferred into a second cryogenic ion trap and the distribution of O- and N-protomers is determined by mid-IR spectroscopy without broadening. The threshold to promote O → N protomer switching is indeed five water molecules. It is smaller than the value reported previously, and as a result, its pentahydrated structure does not support the Grotthuss mechanism proposed previously. The extent of O → N proton transfer is evaluated by collision-assisted stripping IR spectroscopy, and the N-protomer population increases with the number of water molecules. This result is consistent with the dominant population of the N-protomer in aqueous solution.
Collapse
Affiliation(s)
- Kyota Akasaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Fuad Haddad
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Otto Dopfer
- International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.,International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
7
|
Obeid G, Moraes GO, Penna TC, Schenberg LA, Ducati LC, Correra TC. Solvation effects on glyphosate protonation and deprotonation states evaluated by mass spectrometry and explicit solvation simulations. J Chem Phys 2023; 158:054306. [PMID: 36754805 DOI: 10.1063/5.0134003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Glyphosate is a widely used herbicide, and its protonation and deprotonation sites are fundamental to understanding its properties. In this work, the sodiated, protonated, and deprotonated glyphosate were evaluated in the gas phase by infrared multiple photon dissociation spectroscopy to determine the exact nature of these coordination, protonation, and deprotonation states in the gas phase. In this context, Natural Bond Orbital analyses were carried out to unravel interactions that govern glyphosate (de)protonation states in the gas phase. The solvent effect on the protonation/deprotonation equilibria was also investigated by implicit (Solvation Model Based on Density and polarizable continuum models) and explicit solvation models (Monte Carlo and Molecular Dynamics simulations). These results show that glyphosate is protonated in the phosphonate group in the gas phase because of the strong hydrogen bond between the carboxylic oxygen (O7) and the protonated phosphonate group (O8-H19), while the most stable species in water is protonated at the amino group because of the preferential interaction of the NH2 + group and the solvent water molecules. Similarly, deprotonated glyphosate [Glyp-H]- was shown to be deprotonated at the phosphonate group in the gas phase but not in solution, also because of the preferential solvation of the NH2 + group present in the other deprotomers. Therefore, these results show that the stabilization of the protonated amino group by the solvent molecules is the governing factor of the (de)protonation equilibrium of glyphosate in water.
Collapse
Affiliation(s)
- Guilherme Obeid
- Department of Fundamental Chemistry, Institute of Chemistry-University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, Brazil
| | - Gustavo O Moraes
- Department of Fundamental Chemistry, Institute of Chemistry-University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, Brazil
| | - Tatiana C Penna
- Department of Fundamental Chemistry, Institute of Chemistry-University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, Brazil
| | - Leonardo A Schenberg
- Department of Fundamental Chemistry, Institute of Chemistry-University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, Brazil
| | - Lucas C Ducati
- Department of Fundamental Chemistry, Institute of Chemistry-University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, Brazil
| | - Thiago C Correra
- Department of Fundamental Chemistry, Institute of Chemistry-University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, Brazil
| |
Collapse
|