1
|
Atalar K, Rath Y, Crespo-Otero R, Booth GH. Fast and accurate nonadiabatic molecular dynamics enabled through variational interpolation of correlated electron wavefunctions. Faraday Discuss 2024; 254:542-569. [PMID: 39136121 DOI: 10.1039/d4fd00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
We build on the concept of eigenvector continuation to develop an efficient multi-state method for the rigorous and smooth interpolation of a small training set of many-body wavefunctions through chemical space at mean-field cost. The inferred states are represented as variationally optimal linear combinations of the training states transferred between the many-body bases of different nuclear geometries. We show that analytic multi-state forces and nonadiabatic couplings from the model enable application to nonadiabatic molecular dynamics, developing an active learning scheme to ensure a compact and systematically improvable training set. This culminates in application to the nonadiabatic molecular dynamics of a photoexcited 28-atom hydrogen chain, with surprising complexity in the resulting nuclear motion. With just 22 DMRG calculations of training states from the low-energy correlated electronic structure at different geometries, we infer the multi-state energies, forces and nonadiabatic coupling vectors at 12 000 geometries with provable convergence to high accuracy along an ensemble of molecular trajectories, which would not be feasible with a brute force approach. This opens up a route to bridge the timescales between accurate single-point correlated electronic structure methods and timescales of relevance for photo-induced molecular dynamics.
Collapse
Affiliation(s)
- Kemal Atalar
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
| | - Yannic Rath
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
- National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Rachel Crespo-Otero
- Department of Chemistry University College London, 2020 Gordon St., London, WC1H 0AJ, UK
| | - George H Booth
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
| |
Collapse
|
2
|
Zhai H, Larsson HR, Lee S, Cui ZH, Zhu T, Sun C, Peng L, Peng R, Liao K, Tölle J, Yang J, Li S, Chan GKL. Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. J Chem Phys 2023; 159:234801. [PMID: 38108484 DOI: 10.1063/5.0180424] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.
Collapse
Affiliation(s)
- Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Henrik R Larsson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Tianyu Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chong Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Linqing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ruojing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ke Liao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes Tölle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Junjie Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Shuoxue Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|