1
|
Martinka J, Pederzoli M, Barbatti M, Dral PO, Pittner J. A simple approach to rotationally invariant machine learning of a vector quantity. J Chem Phys 2024; 161:174104. [PMID: 39484894 DOI: 10.1063/5.0230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
Unlike with the energy, which is a scalar property, machine learning (ML) prediction of vector or tensor properties poses the additional challenge of achieving proper invariance (covariance) with respect to molecular rotation. For the energy gradients needed in molecular dynamics (MD), this symmetry is automatically fulfilled when taking analytic derivative of the energy, which is a scalar invariant (using properly invariant molecular descriptors). However, if the properties cannot be obtained by differentiation, other appropriate methods should be applied to retain the covariance. Several approaches have been suggested to properly treat this issue. For nonadiabatic couplings and polarizabilities, for example, it was possible to construct virtual quantities from which the above tensorial properties are obtained by differentiation and thus guarantee the covariance. Another possible solution is to build the rotational equivariance into the design of a neural network employed in the model. Here, we propose a simpler alternative technique, which does not require construction of auxiliary properties or application of special equivariant ML techniques. We suggest a three-step approach, using the molecular tensor of inertia. In the first step, the molecule is rotated using the eigenvectors of this tensor to its principal axes. In the second step, the ML procedure predicts the vector property relative to this orientation, based on a training set where all vector properties were in this same coordinate system. As the third step, it remains to transform the ML estimate of the vector property back to the original orientation. This rotate-predict-rotate (RPR) procedure should thus guarantee proper covariance of a vector property and is trivially extensible also to tensors such as polarizability. The RPR procedure has an advantage that the accurate models can be trained very fast for thousands of molecular configurations, which might be beneficial where many training sets are required (e.g., in active learning). We have implemented the RPR technique, using the MLatom and Newton-X programs for ML and MD, and performed its assessment on the dipole moment along MD trajectories of 1,2-dichloroethane.
Collapse
Affiliation(s)
- Jakub Martinka
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
| | - Marek Pederzoli
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
2
|
Zhu X, Gu B. Making Peace with Random Phases: Ab Initio Conical Intersection Quantum Dynamics in Random Gauges. J Phys Chem Lett 2024; 15:8487-8493. [PMID: 39133253 DOI: 10.1021/acs.jpclett.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ab initio modeling of conical intersection wave packet dynamics is crucial for various photochemical, photophysical, and biological processes. However, adiabatic electronic states obtained from electronic structure computations involve random phases, or more generally, random gauge fixings, which cannot be directly used in the modeling of nonadiabatic wave packet simulations. Here we develop a random-gauge local diabatic representation that allows an exact modeling of conical intersection dynamics directly using the adiabatic electronic states with phases randomly assigned during the electronic structure computations. Its utility is demonstrated by an exact ab initio modeling of the two-dimensional Shin-Metiu model with and without an external magnetic field. Our results provide a simple approach to integrating the electronic structure computations into nonadiabatic quantum dynamics, thus paving the way for ab initio modeling of conical intersection dynamics.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Friede M, Hölzer C, Ehlert S, Grimme S. dxtb-An efficient and fully differentiable framework for extended tight-binding. J Chem Phys 2024; 161:062501. [PMID: 39120026 DOI: 10.1063/5.0216715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Automatic differentiation (AD) emerged as an integral part of machine learning, accelerating model development by enabling gradient-based optimization without explicit analytical derivatives. Recently, the benefits of AD and computing arbitrary-order derivatives with respect to any variable were also recognized in the field of quantum chemistry. In this work, we present dxtb-an open-source, fully differentiable framework for semiempirical extended tight-binding (xTB) methods. Developed entirely in Python and leveraging PyTorch for array operations, dxtb facilitates extensibility and rapid prototyping while maintaining computational efficiency. Through comprehensive code vectorization and optimization, we essentially reach the speed of compiled xTB programs for high-throughput calculations of small molecules. The excellent performance also scales to large systems, and batch operability yields additional benefits for execution on parallel hardware. In particular, energy evaluations are on par with existing programs, whereas the speed of automatically differentiated nuclear derivatives is only 2 to 5 times slower compared to their analytical counterparts. We showcase the utility of AD in dxtb by calculating various molecular and spectroscopic properties, highlighting its capacity to enhance and simplify such evaluations. Furthermore, the framework streamlines optimization tasks and offers seamless integration of semiempirical quantum chemistry in machine learning, paving the way for physics-inspired end-to-end differentiable models. Ultimately, dxtb aims to further advance the capabilities of semiempirical methods, providing an extensible foundation for future developments and hybrid machine learning applications. The framework is accessible at https://github.com/grimme-lab/dxtb.
Collapse
Affiliation(s)
- Marvin Friede
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn 53115, Germany
| | - Christian Hölzer
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn 53115, Germany
| | - Sebastian Ehlert
- AI4Science, Microsoft Research, Evert van de Beekstraat 354, 1118CZ Schiphol, Netherlands
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
4
|
Li S, Xie BB, Yin BW, Liu L, Shen L, Fang WH. Construction of Highly Accurate Machine Learning Potential Energy Surfaces for Excited-State Dynamics Simulations Based on Low-Level Data Sets. J Phys Chem A 2024; 128:5516-5524. [PMID: 38954640 DOI: 10.1021/acs.jpca.4c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Machine learning is capable of effectively predicting the potential energies of molecules in the presence of high-quality data sets. Its application in the construction of ground- and excited-state potential energy surfaces is attractive to accelerate nonadiabatic molecular dynamics simulations of photochemical reactions. Because of the huge computational cost of excited-state electronic structure calculations, the construction of a high-quality data set becomes a bottleneck. In the present work, we first built two data sets. One was obtained from surface hopping dynamics simulations at the semiempirical OM2/MRCI level. Another was extracted from the dynamics trajectories at the CASSCF level, which was reported previously. The ground- and excited-state potential energy surfaces of ethylene-bridged azobenzene at the CASSCF computational level were constructed based on the former low-level data set. Although non-neural network machine learning methods can achieve good or modest performance during the training process, only neural network models provide reliable predictions on the latter external test data set. The BPNN and SchNet combined with the Δ-ML scheme and the force term in the loss functions are recommended for dynamics simulations. Then, we performed excited-state dynamics simulations of the photoisomerization of ethylene-bridged azobenzene on machine learning potential energy surfaces. Compared with the lifetimes of the first excited state (S1) estimated at different computational levels, our results on the E isomer are in good agreement with the high-level estimation. However, the overestimation of the Z isomer is unimproved. It suggests that smaller errors during the training process do not necessarily translate to more accurate predictions on high-level potential energies or better performance on nonadiabatic dynamics simulations, at least in the present case.
Collapse
Affiliation(s)
- Shuai Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, Zhejiang, P. R. China
| | - Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, Zhejiang, P. R. China
| | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai 265505, Shandong, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, Shandong, P. R. China
| |
Collapse
|
5
|
Zhang L, Pios SV, Martyka M, Ge F, Hou YF, Chen Y, Chen L, Jankowska J, Barbatti M, Dral PO. MLatom Software Ecosystem for Surface Hopping Dynamics in Python with Quantum Mechanical and Machine Learning Methods. J Chem Theory Comput 2024; 20:5043-5057. [PMID: 38836623 DOI: 10.1021/acs.jctc.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We present an open-source MLatom@XACS software ecosystem for on-the-fly surface hopping nonadiabatic dynamics based on the Landau-Zener-Belyaev-Lebedev algorithm. The dynamics can be performed via Python API with a wide range of quantum mechanical (QM) and machine learning (ML) methods, including ab initio QM (CASSCF and ADC(2)), semiempirical QM methods (e.g., AM1, PM3, OMx, and ODMx), and many types of ML potentials (e.g., KREG, ANI, and MACE). Combinations of QM and ML methods can also be used. While the user can build their own combinations, we provide AIQM1, which is based on Δ-learning and can be used out-of-the-box. We showcase how AIQM1 reproduces the isomerization quantum yield of trans-azobenzene at a low cost. We provide example scripts that, in dozens of lines, enable the user to obtain the final population plots by simply providing the initial geometry of a molecule. Thus, those scripts perform geometry optimization, normal mode calculations, initial condition sampling, parallel trajectories propagation, population analysis, and final result plotting. Given the capabilities of MLatom to be used for training different ML models, this ecosystem can be seamlessly integrated into the protocols building ML models for nonadiabatic dynamics. In the future, a deeper and more efficient integration of MLatom with Newton-X will enable a vast range of functionalities for surface hopping dynamics, such as fewest-switches surface hopping, to facilitate similar workflows via the Python API.
Collapse
Affiliation(s)
- Lina Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sebastian V Pios
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, People's Republic of China
| | - Mikołaj Martyka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Fuchun Ge
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi-Fan Hou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuxinxin Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lipeng Chen
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, People's Republic of China
| | - Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| | - Pavlo O Dral
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| |
Collapse
|
6
|
Vandaele E, Mališ M, Luber S. A Local Diabatisation Method for Two-State Adiabatic Conical Intersections. J Chem Theory Comput 2024; 20:856-872. [PMID: 38174710 DOI: 10.1021/acs.jctc.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A methodology to locally characterize conical intersections (CIs) between two adiabatic electronic states for which no nonadiabatic coupling (NAC) vectors are available is presented. Based on the Hessian and gradient at the CI, the branching space coordinates are identified. The potential energy surface around the CI in the branching space is expressed in the diabatic representation, from which the NAC vectors can be calculated in a wave-function-free, energy-based approach. To demonstrate the universality of the developed methodology, the minimum-energy CI (MECI) between the first (S1) and second (S2) singlet excited states of formamide is investigated at the state-averaged complete active space self-consistent field (SA-CASSCF) and extended multistate complete active space second-order perturbation theory (XMS-CASPT2) levels of theory. In addition, the asymmetrical MECI between the ground state (S0) and S1 of cyclopropanone is evaluated using SA-CASSCF, as well as (ME)CIs between the S1 and S2 states of benzene using SA-CASSCF and time-dependent density functional theory (TDDFT). Finally, a CI between the S1 and S2 excited states of thiophene was analyzed using TDDFT.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Li X, Lubbers N, Tretiak S, Barros K, Zhang Y. Machine Learning Framework for Modeling Exciton Polaritons in Molecular Materials. J Chem Theory Comput 2024; 20:891-901. [PMID: 38168674 DOI: 10.1021/acs.jctc.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A light-matter hybrid quasiparticle, called a polariton, is formed when molecules are strongly coupled to an optical cavity. Recent experiments have shown that polariton chemistry can manipulate chemical reactions. Polariton chemistry is a collective phenomenon, and its effects increase with the number of molecules in a cavity. However, simulating an ensemble of molecules in the excited state coupled to a cavity mode is theoretically and computationally challenging. Recent advances in machine learning (ML) techniques have shown promising capabilities in modeling ground-state chemical systems. This work presents a general protocol to predict excited-state properties, such as energies, transition dipoles, and nonadiabatic coupling vectors with the hierarchically interacting particle neural network. ML predictions are then applied to compute the potential energy surfaces and electronic spectra of a prototype azomethane molecule in the collective coupling scenario. These computational tools provide a much-needed framework to model and understand many molecules' emerging excited-state polariton chemistry.
Collapse
Affiliation(s)
- Xinyang Li
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lubbers
- Information Sciences, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kipton Barros
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Chen WK, Wang SR, Liu XY, Fang WH, Cui G. Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations. Molecules 2023; 28:molecules28104222. [PMID: 37241962 DOI: 10.3390/molecules28104222] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In this work, we implemented an approximate algorithm for calculating nonadiabatic coupling matrix elements (NACMEs) of a polyatomic system with ab initio methods and machine learning (ML) models. Utilizing this algorithm, one can calculate NACMEs using only the information of potential energy surfaces (PESs), i.e., energies, and gradients as well as Hessian matrix elements. We used a realistic system, namely CH2NH, to compare NACMEs calculated by this approximate PES-based algorithm and the accurate wavefunction-based algorithm. Our results show that this approximate PES-based algorithm can give very accurate results comparable to the wavefunction-based algorithm except at energetically degenerate points, i.e., conical intersections. We also tested a machine learning (ML)-trained model with this approximate PES-based algorithm, which also supplied similarly accurate NACMEs but more efficiently. The advantage of this PES-based algorithm is its significant potential to combine with electronic structure methods that do not implement wavefunction-based algorithms, low-scaling energy-based fragment methods, etc., and in particular efficient ML models, to compute NACMEs. The present work could encourage further research on nonadiabatic processes of large systems simulated by ab initio nonadiabatic dynamics simulation methods in which NACMEs are always required.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Sheng-Rui Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
9
|
Abstract
We present a nonadiabatic classical-trajectory approach that offers the best of both worlds between fewest-switches surface hopping (FSSH) and quasiclassical mapping dynamics. This mapping approach to surface hopping (MASH) propagates the nuclei on the active adiabatic potential-energy surface, such as in FSSH. However, unlike in FSSH, transitions between active surfaces are deterministic and occur when the electronic mapping variables evolve between specified regions of the electronic phase space. This guarantees internal consistency between the active surface and the electronic degrees of freedom throughout the dynamics. MASH is rigorously derivable from exact quantum mechanics as a limit of the quantum-classical Liouville equation (QCLE), leading to a unique prescription for momentum rescaling and frustrated hops. Hence, a quantum-jump procedure can, in principle, be used to systematically converge the accuracy of the results to that of the QCLE. This jump procedure also provides a rigorous framework for deriving approximate decoherence corrections similar to those proposed for FSSH. We apply MASH to simulate the nonadiabatic dynamics in various model systems and show that it consistently produces more accurate results than FSSH at a comparable computational cost.
Collapse
|