1
|
Fedorov DG. Importance of Charge Balance for the Embedding of Zwitterionic Solutes in the Fragment Molecular Orbital Method. J Phys Chem A 2024. [PMID: 39668332 DOI: 10.1021/acs.jpca.4c07218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Three new schemes of induced solvent charges for the auxiliary polarization formulation of the fragment molecular orbital method are proposed and compared to the original approach. It is found that the charge balance of the solute and solvent embeddings is crucial for maintaining a proper gap between occupied and virtual orbitals of fragments for zwitterionic systems in solution. The original instability is eliminated with the new scheme of fragment-specific solvent charges. The developed stable embedding method is applied to perform MP2/aug-cc-pVTZ calculations of a protein-ligand complex containing 1102 amino acid residues.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
2
|
Guan S, Song H, Zhou Z, Qu Z. Many-Body Expansion-Based Quantum Mechanical Force Field for Cyclotrimethylene Trinitramine under High Pressure. J Phys Chem Lett 2024; 15:8526-8532. [PMID: 39133832 DOI: 10.1021/acs.jpclett.4c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
RDX undergoes pressures of approximately 30-50 GPa during detonation, leading to significant changes in intermolecular interactions. Accurately describing these interactions is crucial for understanding the energy transfer in the detonation process. To address this, this work introduces a many-body expansion-based quantum mechanical force field (MB-QMFF) to accurately describe RDX's intermolecular interactions under high pressures. Using MB-QMFF, we evaluated various density functionals and found that the M062X functional with GD3 dispersion correction provided the highest accuracy. Regarding intermolecular forces, two-body interactions were the most significant, with three-body interactions being negligible. Additionally, we investigated intermolecular energy variations at different densities (or pressures). The results clearly demonstrate an accurate description of intermolecular interactions by the MB-QMFF scheme. Therefore, we believe that the MB-QMFF scheme can serve as a foundation for the development of RDX-specific force fields and pave the way for future studies on the detonation process of RDX.
Collapse
Affiliation(s)
- Shuai Guan
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Huajie Song
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| | - Zhongjun Zhou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
3
|
Fedorov DG. The Peptide Bond: Resonance Increases Bond Order and Complicates Fragmentation. Chemphyschem 2024; 25:e202400170. [PMID: 38749916 DOI: 10.1002/cphc.202400170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Indexed: 06/28/2024]
Abstract
The enhancement of the peptide bond order by a resonance in the lone pair of N and the π-bond of CO is analyzed. A decomposition of the bond order in terms of localized molecular orbitals is developed and applied to the peptide bond. A combination of two rotations of hybrid orbitals is proposed to improve the boundary treatment in the fragment molecular orbital method. The developed approach is applied to peptide bonds, and it is found crucial to retain the π orbital in the variational space of both fragments across the boundary. The interaction energies between conventional amino acid residues in Trp-cage (1L2Y) are discussed.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan
| |
Collapse
|
4
|
Fedorov DG. Partition analysis of dipole moments in solution applied to functional groups in polypeptide motifs. Phys Chem Chem Phys 2024; 26:18614-18628. [PMID: 38919134 DOI: 10.1039/d4cp01654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A partition analysis based on segments is developed for density functional theory defining solute dipole moments of functional groups, and the corresponding induced solvent dipoles representing solvent screening. The accuracy of dipoles from the fragment molecular orbital method is evaluated in comparison to unfragmented values. The analysis is applied to evaluate dipole moments of side chains, amino and carbonyl groups in common polypeptide motifs, α-helixes, β-turns, and random coils in solution. The membrane domain of the ATP synthase (1B9U) is analyzed, revealing the effect of the bend splitting of the α-helix into two pieces.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan.
| |
Collapse
|
5
|
Fedorov DG. Use of caps in the auxiliary basis set formulation of the fragment molecular orbital method. J Comput Chem 2024; 45:1540-1551. [PMID: 38490813 DOI: 10.1002/jcc.27345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
An auxiliary polarization formulation of the fragment molecular orbital (FMO) method is developed, combining a basis set correction computed for capped isolated fragments with a polarization obtained from uncapped fragments. For a set of organic and inorganic test systems, it is shown that the total energy and atomic charges are accurately reproduced with respect to full unfragmented calculations. It is demonstrated that the method is accurate for computing electronic excited states. The developed approach is applied to rank the isomers of chignolin from experimental NMR data (PDB: 1UAO) according to their relative energy. Contributions of polarization and basis set effects to pair interactions between fragments are elucidated.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
6
|
Ludík J, Kostková V, Kocian Š, Touš P, Štejfa V, Červinka C. First-Principles Models of Polymorphism of Pharmaceuticals: Maximizing the Accuracy-to-Cost Ratio. J Chem Theory Comput 2024; 20:2858-2870. [PMID: 38531828 PMCID: PMC11008097 DOI: 10.1021/acs.jctc.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Accuracy and sophistication of in silico models of structure, internal dynamics, and cohesion of molecular materials at finite temperatures increase over time. Applicability limits of ab initio polymorph ranking that would be feasible at reasonable costs currently represent crystals of moderately sized molecules (less than 20 nonhydrogen atoms) and simple unit cells (containing rather only one symmetry-irreducible molecule). Extending the applicability range of the underlying first-principles methods to larger systems with a real-life significance, and enabling to perform such computations in a high-throughput regime represent additional challenges to be tackled in computational chemistry. This work presents a novel composite method that combines the computational efficiency of density-functional tight-binding (DFTB) methods with the accuracy of density-functional theory (DFT). Being rooted in the quasi-harmonic approximation, it uses a cheap method to perform all of the costly scans of how static and dynamic characteristics of the crystal vary with respect to its volume. Such data are subsequently corrected to agree with a higher-level model, which must be evaluated only at a single volume of the crystal. It thus enables predictions of structural, cohesive, and thermodynamic properties of complex molecular materials, such as pharmaceuticals or organic semiconductors, at a fraction of the original computational cost. As the composite model retains the solid physical background, it suffers from a minimum accuracy deterioration compared to the full treatment with the costly approach. The novel methodology is demonstrated to provide consistent results for the structural and thermodynamic properties of real-life molecular crystals and their polymorph ranking.
Collapse
Affiliation(s)
- Jan Ludík
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Veronika Kostková
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Štefan Kocian
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Petr Touš
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| |
Collapse
|
7
|
Straatsma TP, Windus TL, Nakajima T. Special Topic on High Performance Computing in Chemical Physics. J Chem Phys 2023; 159:210401. [PMID: 38038196 DOI: 10.1063/5.0185894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Computational modeling and simulation have become indispensable scientific tools in virtually all areas of chemical, biomolecular, and materials systems research. Computation can provide unique and detailed atomic level information that is difficult or impossible to obtain through analytical theories and experimental investigations. In addition, recent advances in micro-electronics have resulted in computer architectures with unprecedented computational capabilities, from the largest supercomputers to common desktop computers. Combined with the development of new computational domain science methodologies and novel programming models and techniques, this has resulted in modeling and simulation resources capable of providing results at or better than experimental chemical accuracy and for systems in increasingly realistic chemical environments.
Collapse
Affiliation(s)
- Tjerk P Straatsma
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6373, USA
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, USA
| | - Theresa L Windus
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-2416, USA
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011-2416, USA
| | | |
Collapse
|
8
|
Zhao D, Zhao Y, He X, Li Y, Ayers PW, Liu S. Accurate and Efficient Prediction of Post-Hartree-Fock Polarizabilities of Condensed-Phase Systems. J Chem Theory Comput 2023; 19:6461-6470. [PMID: 37676647 DOI: 10.1021/acs.jctc.3c00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
To accurately and efficiently predict the molecular response properties (such as polarizability) at post-Hartree-Fock levels for condensed-phase systems under periodic boundary conditions (PBC) is still an unaccomplished and ongoing task. We demonstrate that static isotropic polarizabilities can be cost-effectively predicted at post-Hartree-Fock levels by combining the linear-scaling generalized energy-based fragmentation (GEBF) and information-theoretic approach (ITA) quantities. In PBC-GEBF, the total molecular polarizability of an extended system is obtained as a linear combination of the corresponding quantities of a series of small embedded subsystems of several monomers. Here, we show that in the PBC-GEBF-ITA framework, one can obtain the molecular polarizabilities and establish linear relations to ITA quantities. Once these relations are established for smaller subsystems, one can predict the polarizabilities of larger subsystems directly from the molecular wavefunction (or electron density) via ITA quantities. Alternatively, one can determine the total molecular polarizability via a linear combination equation in PBC-GEBF. We have corroborated that this newly proposed PBC-GEBF-ITA protocol is much more efficient than the original PBC-GEBF approach but is not much less accurate and that this conclusion holds for both many-body perturbation theory and the coupled cluster calculations. Good efficiency and transferability of the PBC-GEBF-ITA protocol are demonstrated for periodic systems with several hundred atoms in a unit cell.
Collapse
Affiliation(s)
- Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, P. R. China
| | - Yilin Zhao
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Xin He
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, P. R. China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|