1
|
Chugh A, Karmakar SD, Ganesh R. Aggregate morphing of self-aligning soft active disks in semi-confined geometry. Sci Rep 2024; 14:27505. [PMID: 39528621 PMCID: PMC11555235 DOI: 10.1038/s41598-024-77219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
We study the dependence of alignment and confinement on the aggregate morphology of self-aligning soft disks(particles) in a planer box (two dimensional) geometry confined along y direction using Langevin dynamics simulations. We show that when the box width decreases, the aggregate wall accumulation becomes non-uniform and displays non-monotonic behaviour in terms of phase behavior and height of these aggregates with an increase in alignment strength. Additionally, we identify two distinct categories of wall aggregates: layered and non-layered structures each exhibiting distinct local structural properties. For non-layered structures, local speed of the particles stay nearly constant as we move away from the boundary, while for layered structures, it increases with distance from the boundary. Our analysis shows that active pressure difference is a useful indicator for different aggregate morphologies and the peaks in the pressure curve are indicative of the average and minimum height of the structure.
Collapse
Affiliation(s)
- Anshika Chugh
- Institute for Plasma Research, Bhat, Gandhinagar, 382428, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Soumen De Karmakar
- Institute for Theoretical Physics IV, University of Stuttgart, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Rajaraman Ganesh
- Institute for Plasma Research, Bhat, Gandhinagar, 382428, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
2
|
Karan C, Chaudhuri A, Chaudhuri D. Inertia and activity: spiral transitions in semi-flexible, self-avoiding polymers. SOFT MATTER 2024; 20:6221-6230. [PMID: 39049672 DOI: 10.1039/d4sm00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We consider a two-dimensional, tangentially active, semi-flexible, self-avoiding polymer to find a dynamical re-entrant transition between motile open chains and spinning achiral spirals with increasing activity. Utilizing probability distributions of the turning number, we ascertain the comparative stability of the spiral structure and present a detailed phase diagram within the activity inertia plane. The onset of spiral formation at low activity levels is governed by a torque balance and is independent of inertia. At higher activities, however, inertial effects lead to spiral destabilization, an effect absent in the overdamped limit. We further delineate alterations in size and shape by analyzing the end-to-end distance distribution and the radius of gyration tensor. The Kullback-Leibler divergence from equilibrium distributions exhibits a non-monotonic relationship with activity, reaching a peak at the most compact spirals characterized by the most persistent spinning. As inertia increases, this divergence from equilibrium diminishes.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, PO 140306, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
3
|
Shin S, Shi G, Cho HW, Thirumalai D. Transcription-induced active forces suppress chromatin motion. Proc Natl Acad Sci U S A 2024; 121:e2307309121. [PMID: 38489381 PMCID: PMC10963020 DOI: 10.1073/pnas.2307309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
The organization of interphase chromosomes in a number of species is starting to emerge thanks to advances in a variety of experimental techniques. However, much less is known about the dynamics, especially in the functional states of chromatin. Some experiments have shown that the motility of individual loci in human interphase chromosome decreases during transcription and increases upon inhibiting transcription. This is a counterintuitive finding because it is thought that the active mechanical force (F) on the order of ten piconewtons, generated by RNA polymerase II (RNAPII) that is presumably transmitted to the gene-rich region of the chromatin, would render it more open, thus enhancing the mobility. We developed a minimal active copolymer model for interphase chromosomes to investigate how F affects the dynamical properties of chromatin. The movements of the loci in the gene-rich region are suppressed in an intermediate range of F and are enhanced at small F values, which has also been observed in experiments. In the intermediate F, the bond length between consecutive loci increases, becoming commensurate with the distance at the minimum of the attractive interaction between nonbonded loci. This results in a transient disorder-to-order transition, leading to a decreased mobility during transcription. Strikingly, the F-dependent change in the locus dynamics preserves the organization of the chromosome at [Formula: see text]. Transient ordering of the loci, which is not found in the polymers with random epigenetic profiles, in the gene-rich region might be a plausible mechanism for nucleating a dynamic network involving transcription factors, RNAPII, and chromatin.
Collapse
Affiliation(s)
- Sucheol Shin
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712
| | - Guang Shi
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712
- Department of Materials Science, University of Illinois, Urbana, IL61801
| | - Hyun Woo Cho
- Department of Fine Chemistry and Center for Functional Biomaterials, Seoul National University of Science and Technology, Seoul01811, Republic of Korea
| | - D. Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712
- Department of Physics, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
4
|
Herrera P, Sandoval M. Structure of the active Fokker-Planck equation. Phys Rev E 2024; 109:014140. [PMID: 38366424 DOI: 10.1103/physreve.109.014140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
This paper solves in one and two dimensions the steady noninteractive active Fokker-Planck (FP) equation and finds that its velocity distribution admits, under limiting cases, a dual behavior. Briefly, when the inertial relaxation time is smaller than the orientation time, the active FP equation admits a bimodal shape, whereas the inverse condition is seen to admit a Gaussian one. Once the velocity distribution functions are available, they are used to find their effect on the system's transport properties, such as its mean-square speed. In the process, a useful mathematical identity for the first kind Bessel function as a sum of bimodal exponential functions is spotted.
Collapse
Affiliation(s)
- Pedro Herrera
- Department of Physics, Complex Systems, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Mario Sandoval
- Department of Physics, Complex Systems, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
5
|
Jerez MJY, Rangaig NA, Confesor MNP. Effective temperature for an intermittent bistable potential. J Chem Phys 2023; 159:154903. [PMID: 37851394 DOI: 10.1063/5.0165670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Thermodynamics of far-from-equilibrium systems often require measurement of effective parameters such as temperature. Whether such approach is valid for the general case of resetting protocols, active systems, or of confined systems under time-varying fields is still under investigation. We report on the effect of switching ON-OFF of an asymmetric bistable potential to the mean first passage time (MFPT) of a probed particle to go from one potential minima to the other. Experimental results coupled with numerical simulations shows the potential becoming more symmetric at slow switching. Moreover, the MFPT deviates from equilibrium condition with an effective temperature, Teff < T, at slow switching but approaches room temperature, T, at fast switching. For each switching rate, we quantify how far the system is from equilibrium by measuring deviation from a detailed balance like relation and the net circulation of flux present in phase-space. Both analysis suggest equilibrium condition are met at high switching.
Collapse
Affiliation(s)
- Michael Jade Y Jerez
- Department of Physics and Complex Systems Research Center-PRISM, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - Norodin A Rangaig
- Department of Physics, Mindanao State University-Marawi Campus, 9700 Marawi City, Philippines
| | - Mark Nolan P Confesor
- Department of Physics and Complex Systems Research Center-PRISM, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| |
Collapse
|
6
|
Kailasham R, Khair AS. Effect of speed fluctuations on the collective dynamics of active disks. SOFT MATTER 2023; 19:7764-7774. [PMID: 37791487 DOI: 10.1039/d3sm00665d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Numerical simulations are performed on the collective dynamics of active disks, whose self-propulsion speed (U) varies in time, and whose orientation evolves according to rotational Brownian motion. Two protocols for the evolution of speed are considered: (i) a deterministic one involving a periodic change in U at a frequency ω; and (ii) a stochastic one in which the speeds are drawn from a power-law distribution at time-intervals governed by a Poissonian process of rate β. In the first case, an increase in ω causes the disks to go from a clustered state to a homogeneous one through an apparent phase-transition, provided that the direction of self-propulsion is allowed to reverse. Similarly, in the second case, for a fixed value of β, the extent of cluster-breakup is larger when reversals in the self-propulsion direction are permitted. Motility-induced phase separation of the disks may therefore be avoided in active matter suspensions in which the constituents are allowed to reverse their self-propulsion direction, immaterial of the precise temporal nature of the reversal (deterministic or stochastic). Equally, our results demonstrate that phase separation could occur even in the absence of a time-averaged motility of an individual active agent, provided that the rate of direction reversals is smaller than the orientational diffusion rate.
Collapse
Affiliation(s)
- R Kailasham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Abstract
In this work, the free expansion of an inertial active gas in three dimensions made of spherical non-interactive active Brownian particles with both translational and rotational inertia (IABPs) is studied. After elucidating the active particles' orientational correlation in three dimensions by employing a Fokker-Planck formalism, the diffusion, mean-square speed, persistence length, reorientation time, Swim and Reynolds pressures and total pressure of this system, are obtained theoretically and corroborated by performing Langevin dynamics simulations. Afterwards, a numerical study on particles' distribution and the mechanical pressure exerted by the active gas enclosed in a cubic box and its dependence on inertia is also carried out. This experiment highlights two important observations: first, as inertia in the system grows while fixing activity, a more uniform particle distribution within the box is achieved. In other words, the classical accumulation of active particles at the walls is seen to be suppressed by inertia. Second, an active gas with translational and rotational inertiae and made of spherical particles still has a state equation which is offered here. This is supported by the fact that both the mechanical pressure definition and the bulk pressure definition as the trace of the swim and Reynolds stress tensors, coincide in the thermodynamic limit.
Collapse
Affiliation(s)
- Mario Sandoval
- Department of Physics, Complex Systems, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico.
| |
Collapse
|
8
|
Sprenger AR, Caprini L, Löwen H, Wittmann R. Dynamics of active particles with translational and rotational inertia. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305101. [PMID: 37059111 DOI: 10.1088/1361-648x/accd36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Inertial effects affecting both the translational and rotational dynamics are inherent to a broad range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models in the framework of active matter to correctly reproduce experimental results, hopefully achieving theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to capture the basic features of the well-established inertial active Brownian particle model, i.e. the persistence time of the active motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these two models predict similar dynamics at all timescales and, in general, our inertial AOUP model consistently yields the same trend upon changing the moment of inertia for various dynamical correlation functions.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Te Vrugt M, Frohoff-Hülsmann T, Heifetz E, Thiele U, Wittkowski R. From a microscopic inertial active matter model to the Schrödinger equation. Nat Commun 2023; 14:1302. [PMID: 36894573 PMCID: PMC9998892 DOI: 10.1038/s41467-022-35635-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/14/2022] [Indexed: 03/11/2023] Open
Abstract
Active field theories, such as the paradigmatic model known as 'active model B+', are simple yet very powerful tools for describing phenomena such as motility-induced phase separation. No comparable theory has been derived yet for the underdamped case. In this work, we introduce active model I+, an extension of active model B+ to particles with inertia. The governing equations of active model I+ are systematically derived from the microscopic Langevin equations. We show that, for underdamped active particles, thermodynamic and mechanical definitions of the velocity field no longer coincide and that the density-dependent swimming speed plays the role of an effective viscosity. Moreover, active model I+ contains an analog of the Schrödinger equation in Madelung form as a limiting case, allowing one to find analoga of the quantum-mechanical tunnel effect and of fuzzy dark matter in active fluids. We investigate the active tunnel effect analytically and via numerical continuation.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Tobias Frohoff-Hülsmann
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Eyal Heifetz
- Porter School of the Environment and Earth Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|