1
|
Biasiori-Poulanges L, Lukić B, Supponen O. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field. ULTRASONICS SONOCHEMISTRY 2024; 102:106738. [PMID: 38150955 PMCID: PMC10765487 DOI: 10.1016/j.ultsonch.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
This work investigates the fundamental role of cavitation bubble clouds in stone comminution by focused ultrasound. The fragmentation of stones by ultrasound has applications in medical lithotripsy for the comminution of kidney stones or gall stones, where their fragmentation is believed to result from the high acoustic wave energy as well as the formation of cavitation. Cavitation is known to contribute to erosion and to cause damage away from the target, yet the exact contribution and mechanisms of cavitation remain currently unclear. Based on in situ experimental observations, post-exposure microtomography and acoustic simulations, the present work sheds light on the fundamental role of cavitation bubbles in the stone surface fragmentation by correlating the detected damage to the observed bubble activity. Our results show that not all clouds erode the stone, but only those located in preferential nucleation sites whose locations are herein examined. Furthermore, quantitative characterizations of the bubble clouds and their trajectories within the ultrasonic field are discussed. These include experiments with and without the presence of a model stone in the acoustic path length. Finally, the optimal stone-to-source distance maximizing the cavitation-induced surface damage area has been determined. Assuming the pressure magnitude within the focal region to exceed the cavitation pressure threshold, this location does not correspond to the acoustic focus, where the pressure is maximal, but rather to the region where the acoustic beam and thereby the acoustic cavitation activity near the stone surface is the widest.
Collapse
Affiliation(s)
- Luc Biasiori-Poulanges
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Bratislav Lukić
- European Synchrotron Radiation Facility, CS 40220, Grenoble F-38043, France
| | - Outi Supponen
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.
| |
Collapse
|
2
|
Xiang G, Chen J, Ho D, Sankin G, Zhao X, Liu Y, Wang K, Dolbow J, Yao J, Zhong P. Shock waves generated by toroidal bubble collapse are imperative for kidney stone dusting during Holmium:YAG laser lithotripsy. ULTRASONICS SONOCHEMISTRY 2023; 101:106649. [PMID: 37866136 PMCID: PMC10623368 DOI: 10.1016/j.ultsonch.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripsy (LL) has been the treatment of choice for kidney stone disease for more than two decades, yet the mechanisms of action are not completely clear. Besides photothermal ablation, recent evidence suggests that cavitation bubble collapse is pivotal in kidney stone dusting when the Ho:YAG laser operates at low pulse energy (Ep) and high frequency (F). In this work, we perform a comprehensive series of experiments and model-based simulations to dissect the complex physical processes in LL. Under clinically relevant dusting settings (Ep = 0.2 J, F = 20 Hz), our results suggest that majority of the irradiated laser energy (>90 %) is dissipated by heat generation in the fluid surrounding the fiber tip and the irradiated stone surface, while only about 1 % may be consumed for photothermal ablation, and less than 0.7 % is converted into the potential energy at the maximum bubble expansion. We reveal that photothermal ablation is confined locally to the laser irradiation spot, whereas cavitation erosion is most pronounced at a fiber tip-stone surface distance about 0.5 mm where multi foci ring-like damage outside the thermal ablation zone is observed. The cavitation erosion is caused by the progressively intensified collapse of jet-induced toroidal bubble near the stone surface (<100 μm), as a result of Raleigh-Taylor and Richtmyer-Meshkov instabilities. The ensuing shock wave-stone interaction and resultant leaky Rayleigh waves on the stone surface may lead to dynamic fatigue and superficial material removal under repeated bombardments of toroidal bubble collapses during dusting procedures in LL.
Collapse
Affiliation(s)
- Gaoming Xiang
- Thomas Lord Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; Current address: Optics and Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Junqin Chen
- Thomas Lord Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Derek Ho
- Thomas Lord Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Georgy Sankin
- Thomas Lord Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Xuning Zhao
- Dept. of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Yangyuanchen Liu
- Thomas Lord Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Kevin Wang
- Dept. of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - John Dolbow
- Thomas Lord Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Junjie Yao
- Dept. of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Pei Zhong
- Thomas Lord Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Chen J, Mishra A, Medairos R, Antonelli J, Preminger GM, Lipkin ME, Zhong P. In vitro investigation of stone ablation efficiency, char formation, spark generation, and damage mechanism produced by thulium fiber laser. Urolithiasis 2023; 51:124. [PMID: 37917225 PMCID: PMC10880548 DOI: 10.1007/s00240-023-01501-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
To investigate stone ablation characteristics of thulium fiber laser (TFL), BegoStone phantoms were spot-treated in water at various fiber tip-to-stone standoff distances (SDs, 0.5 ~ 2 mm) over a broad range of pulse energy (Ep, 0.2 ~ 2 J), frequency (F, 5 ~ 150 Hz), and power (P, 10 ~ 30 W) settings. In general, the ablation speed (mm3/s) in BegoStone decreased with SD and increased with Ep, reaching a peak around 0.8 ~ 1.0 J. Additional experiments with calcium phosphate (CaP), uric acid (UA), and calcium oxalate monohydrate (COM) stones were conducted under two distinctly different settings: 0.2 J/100 Hz and 0.8 J/12 Hz. The concomitant bubble dynamics, spark generation and pressure transients were analyzed. Higher ablation speeds were consistently produced at 0.8 J/12 Hz than at 0.2 J/100 Hz, with CaP stones most difficult yet COM and UA stones easier to ablate. Charring was mostly observed in CaP stones at 0.2 J/100 Hz, accompanied by strong spark-generation, explosive combustion, and diminished pressure transients, but not at 0.8 J/12 Hz. By treating stones in parallel fiber orientation and leveraging the proximity effect of a ureteroscope, the contribution of bubble collapse to stone ablation was found to be substantial (16% ~ 59%) at 0.8 J/12 Hz, but not at 0.2 J/100 Hz. Overall, TFL ablation efficiency is significantly better at high Ep/low F setting, attributable to increased cavitation damage with less char formation.
Collapse
Affiliation(s)
- Junqin Chen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, Durham, NC, 27708, USA
| | - Arpit Mishra
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, Durham, NC, 27708, USA
| | - Robert Medairos
- Department of Urology, Duke University Medical Center, Durham, NC, USA
| | - Jodi Antonelli
- Department of Urology, Duke University Medical Center, Durham, NC, USA
| | - Glenn M Preminger
- Department of Urology, Duke University Medical Center, Durham, NC, USA
| | - Michael E Lipkin
- Department of Urology, Duke University Medical Center, Durham, NC, USA
| | - Pei Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, Durham, NC, 27708, USA.
| |
Collapse
|