1
|
Tang T, Casagrande T, Mohammadpour P, Landis W, Lievers B, Grandfield K. Characterization of human trabecular bone across multiple length scales using a correlative approach combining X-ray tomography with LaserFIB and plasma FIB-SEM. Sci Rep 2024; 14:21604. [PMID: 39285214 PMCID: PMC11405866 DOI: 10.1038/s41598-024-72739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
Three-dimensional correlative multimodal and multiscale imaging is an emerging method for investigating the complex hierarchical structure of biological materials such as bone. This approach synthesizes images acquired across multiple length scales, for the same region of interest, to provide a comprehensive view of the material structure of a sample. Here, we develop a workflow for the structural analysis of human trabecular bone using a femtosecond laser to produce a precise grid to facilitate correlation between imaging modalities and identification of structures of interest, in this case, a single trabecula within a volume of trabecular bone. Through such image registration, high resolution X-ray microscopy imaging revealed fine architectural details, including the cement sheath and bone cell lacunae of the selected bone trabecula. The selected bone volume was exposed with a combination of manual polishing and site-specific femtosecond laser ablation and then examined with plasma focused ion beam-scanning electron microscopy. This reliable and versatile correlation approach has the potential to be applied to a variety of biological tissues and traditional engineered materials. The proposed workflow has the enhanced capability for generating highly resolved and broadly contextualized structural data for a better understanding of the architectural features of a material spanning its macroscopic to nanoscopic levels.
Collapse
Affiliation(s)
- Tengteng Tang
- Department of Materials Science and Engineering, McMaster University, Hamilton, Canada.
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, USA.
| | - Travis Casagrande
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Canada
| | - Pardis Mohammadpour
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Canada
| | - William Landis
- Department of Preventive and Restorative Dental Sciences, University of California at San Francisco, San Francisco, USA
| | - Brent Lievers
- Bharti School of Engineering and Computer Science, Laurentian University, Sudbury, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, Canada
| |
Collapse
|
2
|
Gholinia A, Donoghue J, Garner A, Curd M, Lawson MJ, Winiarski B, Geurts R, Withers PJ, Burnett TL. Exploration of fs-laser ablation parameter space for 2D/3D imaging of soft and hard materials by tri-beam microscopy. Ultramicroscopy 2024; 257:113903. [PMID: 38101083 DOI: 10.1016/j.ultramic.2023.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Tri-beam microscopes comprising a fs-laser beam, a Xe+ plasma focused ion beam (PFIB) and an electron beam all in one chamber open up exciting opportunities for site-specific correlative microscopy. They offer the possibility of rapid ablation and material removal by fs-laser, subsequent polishing by Xe-PFIB milling and electron imaging of the same area. While tri-beam systems are capable of probing large (mm) volumes providing high resolution microscopical characterisation of 2D and 3D images across exceptionally wide range of materials and biomaterials applications, presenting high quality/low damage surfaces to the electron beam can present a significant challenge, especially given the large parameter space for optimisation. Here the optimal conditions and artefacts associated with large scale volume milling, mini test piece manufacture, serial sectioning and surface polishing are investigated, both in terms of surface roughness and surface quality for metallic, ceramic, mixed complex phase, carbonaceous, and biological materials. This provides a good starting place for those wishing to examine large areas or volumes by tri-beam microscopy across a range of materials.
Collapse
Affiliation(s)
- A Gholinia
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK.
| | - J Donoghue
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - A Garner
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - M Curd
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - M J Lawson
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - B Winiarski
- Thermo Fisher Scientific, Pecha 1282/12, Brno 62700, Czech Republic
| | - R Geurts
- Thermo Fisher Scientific, Achtseweg Noord 5, Eindhoven 5651GG, The Netherlands
| | - P J Withers
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - T L Burnett
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| |
Collapse
|
3
|
McCafferty CL, Klumpe S, Amaro RE, Kukulski W, Collinson L, Engel BD. Integrating cellular electron microscopy with multimodal data to explore biology across space and time. Cell 2024; 187:563-584. [PMID: 38306982 DOI: 10.1016/j.cell.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.
Collapse
Affiliation(s)
| | - Sven Klumpe
- Research Group CryoEM Technology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|