1
|
Liao GJ, Hsueh WH, Yen YH, Shih YC, Wang CH, Wang JH, Luo MF. Decomposition of methanol-d 4 on Rh nanoclusters supported by thin-film Al 2O 3/NiAl(100) under near-ambient-pressure conditions. Phys Chem Chem Phys 2024; 26:5059-5069. [PMID: 38258542 DOI: 10.1039/d3cp05303b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The decomposition of methanol-d4 (CD3OD) on Rh nanoclusters grown by the deposition of Rh vapors onto an ordered thin film of Al2O3/NiAl(100) was studied, with various surface-probe techniques and largely under near-ambient-pressure (NAP) conditions. The results showed a superior reactivity of small Rh clusters (diameter < 1.5 nm) exposed to CD3OD at 5 × 10-3-0.1 mbar at 400 K; the gaseous production of CO and D2 from decomposed methanol-d4 per Rh surface site on the small Rh clusters with diameters of ∼1.1 nm was nearly 8 times that on large ones with diameters of ∼3.5 nm. The promotion of reactivity with decreased cluster size under NAP conditions was evidently greater than that under ultrahigh vacuum conditions. Moreover, the concentration of atomic carbon (C*; where * denotes adsorbate)-a key catalyst poisoner-yielded from the dissociation of CO* from dehydrogenated methanol-d4 was significantly smaller on small clusters (diameter < 1.5 nm). The NAP size effect on methanol-d4 decomposition involved the surface hydroxyl (OH*) from the little co-adsorbed water (H2O*) that was dissociated at a probability dependent on the cluster size. H2O* was more likely dissociated into OH* on small Rh clusters, by virtue of their more reactive d-band structure, and the OH* then effectively promoted the O-D cleavage of methanol-d4, as the rate-determining step, and thus the reaction probability; on the other hand, the OH* limited CO* dissociation on small Rh clusters via both adsorbate and lateral effects. These results suggest that the superior properties of small Rh clusters in both reactivity and anti-poisoning would persist and be highly applicable under "real-world" catalysis conditions.
Collapse
Affiliation(s)
- Guan-Jr Liao
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| | - Wen-Hao Hsueh
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Zhou Road, Taipei, Taiwan.
| | - Yu-Hsiang Yen
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| | - Yi-Chan Shih
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Zhou Road, Taipei, Taiwan.
| | - Meng-Fan Luo
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| |
Collapse
|
2
|
Hsueh JW, Kuo LH, Chen PH, Chen WH, Chuang CY, Kuo CN, Lue CS, Lai YL, Liu BH, Wang CH, Hsu YJ, Lin CL, Chou JP, Luo MF. Investigating the role of undercoordinated Pt sites at the surface of layered PtTe 2 for methanol decomposition. Nat Commun 2024; 15:653. [PMID: 38253575 PMCID: PMC10803346 DOI: 10.1038/s41467-024-44840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Transition metal dichalcogenides, by virtue of their two-dimensional structures, could provide the largest active surface for reactions with minimal materials consumed, which has long been pursued in the design of ideal catalysts. Nevertheless, their structurally perfect basal planes are typically inert; their surface defects, such as under-coordinated atoms at the surfaces or edges, can instead serve as catalytically active centers. Here we show a reaction probability > 90 % for adsorbed methanol (CH3OH) on under-coordinated Pt sites at surface Te vacancies, produced with Ar+ bombardment, on layered PtTe2 - approximately 60 % of the methanol decompose to surface intermediates CHxO (x = 2, 3) and 35 % to CHx (x = 1, 2), and an ultimate production of gaseous molecular hydrogen, methane, water and formaldehyde. The characteristic reactivity is attributed to both the triangular positioning and varied degrees of oxidation of the under-coordinated Pt at Te vacancies.
Collapse
Affiliation(s)
- Jing-Wen Hsueh
- Department of Physics, National Central University, No. 300 Jhongda Rd., Jhongli District, Taoyuan City, 320317, Taiwan
| | - Lai-Hsiang Kuo
- Department of Physics, National Central University, No. 300 Jhongda Rd., Jhongli District, Taoyuan City, 320317, Taiwan
| | - Po-Han Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Wan-Hsin Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001 University Rd., Hsinchu, 300039, Taiwan
| | - Chi-Yao Chuang
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001 University Rd., Hsinchu, 300039, Taiwan
| | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei, 10601, Taiwan
| | - Chin-Shan Lue
- Department of Physics, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei, 10601, Taiwan
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Ling Lai
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd., Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Bo-Hong Liu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd., Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd., Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Yao-Jane Hsu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd., Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Chun-Liang Lin
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001 University Rd., Hsinchu, 300039, Taiwan.
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, No. 1, Jin-De Rd., Changhua, 50007, Taiwan.
| | - Meng-Fan Luo
- Department of Physics, National Central University, No. 300 Jhongda Rd., Jhongli District, Taoyuan City, 320317, Taiwan.
| |
Collapse
|