1
|
Fleming GR, Scholes GD. The development and applications of multidimensional biomolecular spectroscopy illustrated by photosynthetic light harvesting. Q Rev Biophys 2024; 57:e11. [PMID: 39434618 DOI: 10.1017/s003358352400009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The parallel and synergistic developments of atomic resolution structural information, new spectroscopic methods, their underpinning formalism, and the application of sophisticated theoretical methods have led to a step function change in our understanding of photosynthetic light harvesting, the process by which photosynthetic organisms collect solar energy and supply it to their reaction centers to initiate the chemistry of photosynthesis. The new spectroscopic methods, in particular multidimensional spectroscopies, have enabled a transition from recording rates of processes to focusing on mechanism. We discuss two ultrafast spectroscopies - two-dimensional electronic spectroscopy and two-dimensional electronic-vibrational spectroscopy - and illustrate their development through the lens of photosynthetic light harvesting. Both spectroscopies provide enhanced spectral resolution and, in different ways, reveal pathways of energy flow and coherent oscillations which relate to the quantum mechanical mixing of, for example, electronic excitations (excitons) and nuclear motions. The new types of information present in these spectra provoked the application of sophisticated quantum dynamical theories to describe the temporal evolution of the spectra and provide new questions for experimental investigation. While multidimensional spectroscopies have applications in many other areas of science, we feel that the investigation of photosynthetic light harvesting has had the largest influence on the development of spectroscopic and theoretical methods for the study of quantum dynamics in biology, hence the focus of this review. We conclude with key questions for the next decade of this review.
Collapse
Affiliation(s)
- Graham R Fleming
- Department of Chemistry and QB3 Institute, Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
2
|
Kambhampati P. Unraveling the excitonics of light emission from metal-halide perovskite quantum dots. NANOSCALE 2024; 16:15033-15058. [PMID: 39052235 DOI: 10.1039/d4nr01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal halide semicondictor perovskites have been under intense investigation for their promise in light absorptive applications like photovoltaics. They have more recently experienced interest for their promise in light emissive applications. A key aspect of perovskites is their glassy, ionic lattice that exhibits dynamical disorder. One possible result of this dynamical disorder is their strong coupling between electronic and lattice degrees of freedom which may confer remarkable properties for light emission such as defect tolerance. How does the system, comprised of excitons, couple to the bath, comprised of lattice modes? How does this system-bath interaction give rise to novel light emissive properties and how do these properties give insight into the nature of these materials? We review recent work from this group in which time-resolved photoluminescence spectroscopy is used to reveal such insights. Based upon a fast time resolution of 3 ps, energy resolution, and temperature dependence, a wide variety of insights are gleaned. These insights include: lattice contributions to the emission linewidths, multiexciton formation, hot carrier cooling, excitonic fine structure, single dot superradiance, and a breakdown of the Condon approximation, all due to complex structural dynamics in these materials.
Collapse
|
3
|
Zhu J, Li Y, Lin X, Han Y, Wu K. Coherent phenomena and dynamics of lead halide perovskite nanocrystals for quantum information technologies. NATURE MATERIALS 2024; 23:1027-1040. [PMID: 38951651 DOI: 10.1038/s41563-024-01922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Solution-processed colloidal nanocrystals of lead halide perovskites have been intensively investigated in recent years in the context of optoelectronic devices, during which time their quantum properties have also begun to attract attention. Their unmatched ease of synthetic tunability and unique structural, optical and electronic properties, in conjunction with the confinement of carriers in three dimensions, have motivated studies on observing and controlling coherent light-matter interaction in these materials for quantum information technologies. This Review outlines the recent efforts and achievements in this direction. Particularly notable examples are the observation of coherent single-photon emission, evidence for superfluorescence and the realization of room-temperature coherent spin manipulation for ensemble samples, which have not been achieved for prototypical colloidal CdSe nanocrystals that have been under investigation for decades. This Review aims to highlight these results, point out the challenges ahead towards realistic applications and bring together the efforts of multidisciplinary communities in this nascent field.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuxuan Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuyang Lin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Rojas-Gatjens E, Akkerman QA, Manna L, Srimath Kandada AR, Silva-Acuña C. Exciton-photocarrier interference in mixed lead-halide-perovskite nanocrystals. J Chem Phys 2024; 160:221101. [PMID: 38856052 DOI: 10.1063/5.0203982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The use of semiconductor nanocrystals in scalable quantum technologies requires characterization of the exciton coherence dynamics in an ensemble of electronically isolated crystals in which system-bath interactions are nevertheless strong. In this communication, we identify signatures of Fano-like interference between excitons and photocarriers in the coherent two-dimensional photoluminescence excitation spectral lineshapes of mixed lead-halide perovskite nanocrystals in dilute solution. Specifically, by tuning the femtosecond-pulse spectrum, we show such interference in an intermediate coupling regime, which is evident in the coherent lineshape when simultaneously exciting the exciton and the free-carrier band at higher energy. We conclude that this interference is an intrinsic effect that will be consequential in the quantum dynamics of the system and will thus dictate decoherence dynamics, with consequences in their application in quantum technologies.
Collapse
Affiliation(s)
- Esteban Rojas-Gatjens
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
- School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332, USA
| | - Quinten A Akkerman
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Ajay Ram Srimath Kandada
- Department of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston-Salem, North Carolina 27109, USA
| | - Carlos Silva-Acuña
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
- School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332, USA
- Institut Courtois & Département de Physique, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
5
|
Wang L, Nughays R, Rossi TC, Oppermann M, Ogieglo W, Bian T, Shih CH, Guo TF, Pinnau I, Yin J, Bakr OM, Mohammed OF, Chergui M. Disentangling Thermal from Electronic Contributions in the Spectral Response of Photoexcited Perovskite Materials. J Am Chem Soc 2024; 146:5393-5401. [PMID: 38359303 PMCID: PMC10910496 DOI: 10.1021/jacs.3c12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Disentangling electronic and thermal effects in photoexcited perovskite materials is crucial for photovoltaic and optoelectronic applications but remains a challenge due to their intertwined nature in both the time and energy domains. In this study, we employed temperature-dependent variable-angle spectroscopic ellipsometry, density functional theory calculations, and broadband transient absorption spectroscopy spanning the visible to mid-to-deep-ultraviolet (UV) ranges on MAPbBr3 thin films. The use of deep-UV detection opens a new spectral window that enables the exploration of high-energy excitations at various symmetry points within the Brillouin zone, facilitating an understanding of the ultrafast responses of the UV bands and the underlying mechanisms governing them. Our investigation reveals that the photoinduced spectral features remarkably resemble those generated by pure lattice heating, and we disentangle the relative thermal and electronic contributions and their evolutions at different delay times using combinations of decay-associated spectra and temperature-induced differential absorption. The results demonstrate that the photoinduced transients possess a significant thermal origin and cannot be attributed solely to electronic effects. Following photoexcitation, as carriers (electrons and holes) transfer their energy to the lattice, the thermal contribution increases from ∼15% at 1 ps to ∼55% at 500 ps and subsequently decreases to ∼35-50% at 1 ns. These findings elucidate the intricate energy exchange between charge carriers and the lattice in photoexcited perovskite materials and provide insights into the limited utilization efficiency of photogenerated charge carriers.
Collapse
Affiliation(s)
- Lijie Wang
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Razan Nughays
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Thomas C. Rossi
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Malte Oppermann
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wojciech Ogieglo
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tieyuan Bian
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Kowloon 999077, Hong Kong, P. R. China
| | - Chun-Hua Shih
- Department
of Photonics, National Cheng Kung University, Tainan 701, Taiwan ROC
| | - Tzung-Fang Guo
- Department
of Photonics, National Cheng Kung University, Tainan 701, Taiwan ROC
| | - Ingo Pinnau
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Kowloon 999077, Hong Kong, P. R. China
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Majed Chergui
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
6
|
Brosseau P, Jasrasaria D, Ghosh A, Seiler H, Palato S, Kambhampati P. Two-Dimensional Electronic Spectroscopy Reveals Dynamics within the Bright Fine Structure of CdSe Quantum Dots. J Phys Chem Lett 2024; 15:1702-1707. [PMID: 38316135 DOI: 10.1021/acs.jpclett.3c03378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Semiconductor quantum dots are characterized by a discrete excitonic structure featuring coarse as well as fine structure. The lowest fine structure states have splittings into bright-dark states which are now well confirmed by single dot spectroscopy. In contrast, the splitting of the lowest coarse exciton into bright-bright fine structure states has not been observed nor the dynamics between these states. Here, we use the unique combination of time and energy resolution of two-dimensional electronic spectroscopy to directly observe the fine structure splittings into a bright-bright doublet. These splittings are strongly size dependent, with population relaxation on the <100 fs time scale.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | - Dipti Jasrasaria
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | - Helene Seiler
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | | |
Collapse
|
7
|
Strandell DP, Zenatti D, Nagpal P, Ghosh A, Dirin DN, Kovalenko MV, Kambhampati P. Hot Excitons Cool in Metal Halide Perovskite Nanocrystals as Fast as CdSe Nanocrystals. ACS NANO 2024; 18:1054-1062. [PMID: 38109401 DOI: 10.1021/acsnano.3c10301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The idea of phonon bottlenecks has long been pursued in nanoscale materials for their application in hot exciton devices, such as photovoltaics. Decades ago, it was shown that there is no quantum phonon bottleneck in strongly confined quantum dots due to their physics of quantum confinement. More recently, it was proposed that there are hot phonon bottlenecks in metal halide perovskites due to their physics. Recent work has called into question these bottlenecks in metal halide perovskites. Here, we compare hot exciton cooling in a range of sizes of CsPbBr3 nanocrystals from weakly to strongly confined. These results are compared to strongly confined CdSe quantum dots of two sizes and degrees of quantum confinement. CdSe is a model system as a ruler for measuring hot exciton cooling being fast, by virtue of its efficient Auger-assisted processes. By virtue of 3 ps time resolution, the hot exciton photoluminescence can now be directly observed, which is the most direct measure of the presence of hot excitons and their lifetimes. The hot exciton photoluminescence decays on nearly the same 2 ps time scale on both the weakly confined perovskite and the larger CdSe quantum dots, much faster than the 10 ps cooling predicted by transient absorption experiments. The smaller CdSe quantum dot has still faster cooling, as expected from quantum size effects. The quantum dots of perovskites show extremely fast hot exciton cooling, decaying faster than detection limits of <1 ps, even faster than the CdSe system, suggesting the efficiency of Auger processes in these metal halide perovskite nanocrystals and especially in their quantum dot form. These results across a range of sizes of nanocrystals reveal extremely fast hot exciton cooling at high exciton density, independent of composition, but dependent upon size. Hence these metal halide perovskite nanocrystals seem to cool heavily following quantum dot physics.
Collapse
Affiliation(s)
| | - Davide Zenatti
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Priya Nagpal
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Dmitry N Dirin
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dubendorf, Switzerland
| | | |
Collapse
|