1
|
Mok LC, Garcia-Uceda A, Cooper MN, Kemner-Van De Corput M, De Bruijne M, Feyaerts N, Rosenow T, De Boeck K, Stick S, Tiddens HAWM. The effect of CFTR modulators on structural lung disease in cystic fibrosis. Front Pharmacol 2023; 14:1147348. [PMID: 37113757 PMCID: PMC10127680 DOI: 10.3389/fphar.2023.1147348] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Newly developed quantitative chest computed tomography (CT) outcomes designed specifically to assess structural abnormalities related to cystic fibrosis (CF) lung disease are now available. CFTR modulators potentially can reduce some structural lung abnormalities. We aimed to investigate the effect of CFTR modulators on structural lung disease progression using different quantitative CT analysis methods specific for people with CF (PwCF). Methods: PwCF with a gating mutation (Ivacaftor) or two Phe508del alleles (lumacaftor-ivacaftor) provided clinical data and underwent chest CT scans. Chest CTs were performed before and after initiation of CFTR modulator treatment. Structural lung abnormalities on CT were assessed using the Perth Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF), airway-artery dimensions (AA), and CF-CT methods. Lung disease progression (0-3 years) in exposed and matched unexposed subjects was compared using analysis of covariance. To investigate the effect of treatment in early lung disease, subgroup analyses were performed on data of children and adolescents aged <18 years. Results: We included 16 modulator exposed PwCF and 25 unexposed PwCF. Median (range) age at the baseline visit was 12.55 (4.25-36.49) years and 8.34 (3.47-38.29) years, respectively. The change in PRAGMA-CF %Airway disease (-2.88 (-4.46, -1.30), p = 0.001) and %Bronchiectasis extent (-2.07 (-3.13, -1.02), p < 0.001) improved in exposed PwCF compared to unexposed. Subgroup analysis of paediatric data showed that only PRAGMA-CF %Bronchiectasis (-0.88 (-1.70, -0.07), p = 0.035) improved in exposed PwCF compared to unexposed. Conclusion: In this preliminary real-life retrospective study CFTR modulators improve several quantitative CT outcomes. A follow-up study with a large cohort and standardization of CT scanning is needed to confirm our findings.
Collapse
Affiliation(s)
- L. Clara Mok
- Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Antonio Garcia-Uceda
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Matthew N. Cooper
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | | | - Marleen De Bruijne
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Feyaerts
- Department of Pediatric Pulmonology, University of Leuven, Leuven, Belgium
| | - Tim Rosenow
- Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Kris De Boeck
- Department of Pediatric Pulmonology, University of Leuven, Leuven, Belgium
| | - Stephen Stick
- Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory Medicine, Perth Children’s Hospital, Perth, WA, Australia
| | - Harm A. W. M. Tiddens
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, Netherlands
- *Correspondence: Harm A. W. M. Tiddens,
| |
Collapse
|
2
|
Bakker JT, Klooster K, Bouwman J, Pelgrim GJ, Vliegenthart R, Slebos DJ. Evaluation of spirometry-gated computed tomography to measure lung volumes in emphysema patients. ERJ Open Res 2021; 8:00492-2021. [PMID: 35083322 PMCID: PMC8784891 DOI: 10.1183/23120541.00492-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 11/05/2022] Open
Abstract
IntroductionIn emphysema patient being evaluated for bronchoscopic lung volume reduction (BLVR), accurate measurement of lung volumes is important. Total lung capacity (TLC) and residual volume (RV) are commonly measured by body plethysmography but can also be derived from chest computed tomography (CT). Spirometry-gated CT scanning potentially improves the agreement of CT and body plethysmography. The aim of this study was to compare lung volumes derived from spirometry-gated CT and “breath-hold-coached” CT to the reference standard: body plethysmography.MethodsIn this single-centre retrospective cohort study, emphysema patients being evaluated for BLVR underwent body plethysmography, inspiration (TLC) and expiration (RV) CT scan with spirometer guidance (“gated group”) or with breath-hold-coaching (“non-gated group”). Quantitative analysis was used to calculate lung volumes from the CT.Results200 patients were included in the study (mean±sd age 62±8 years, forced expiratory flow in 1 s 29.2±8.7%, TLC 7.50±1.46 L, RV 4.54±1.07 L). The mean±sd CT-derived TLC was 280±340 mL lower compared to body plethysmography in the gated group (n=100), and 590±430 mL lower for the non-gated group (n=100) (both p<0.001). The mean±sd CT-derived RV was 300±470 mL higher in the gated group and 700±720 mL higher in the non-gated group (both p<0.001). Pearson correlation factors were 0.947 for TLC gated, 0.917 for TLC non-gated, 0.823 for RV gated, 0.693 for RV non-gated, 0.539 for %RV/TLC gated and 0.204 for %RV/TLC non-gated. The differences between the gated and non-gated CT results for TLC and RV were significant for all measurements (p<0.001).ConclusionIn severe COPD patients with emphysema, CT-derived lung volumes are strongly correlated to body plethysmography lung volumes, and especially for RV, more accurate when using spirometry gating.
Collapse
|
3
|
Bakker JT, Klooster K, Vliegenthart R, Slebos DJ. Measuring pulmonary function in COPD using quantitative chest computed tomography analysis. Eur Respir Rev 2021; 30:30/161/210031. [PMID: 34261743 PMCID: PMC9518001 DOI: 10.1183/16000617.0031-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
COPD is diagnosed and evaluated by pulmonary function testing (PFT). Chest computed tomography (CT) primarily serves a descriptive role for diagnosis and severity evaluation. CT densitometry-based emphysema quantification and lobar fissure integrity assessment are most commonly used, mainly for lung volume reduction purposes and scientific efforts. A shift towards a more quantitative role for CT to assess pulmonary function is a logical next step, since more, currently underutilised, information is present in CT images. For instance, lung volumes such as residual volume and total lung capacity can be extracted from CT; these are strongly correlated to lung volumes measured by PFT. This review assesses the current evidence for use of quantitative CT as a proxy for PFT in COPD and discusses challenges in the movement towards CT as a more quantitative modality in COPD diagnosis and evaluation. To better understand the relevance of the traditional PFT measurements and the role CT might play in the replacement of these parameters, COPD pathology and traditional PFT measurements are discussed. CT may be used as a proxy for lung function in COPD diagnosis and evaluation, particularly for the hyperinflation markershttps://bit.ly/2RrGAZf
Collapse
Affiliation(s)
- Jens T Bakker
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karin Klooster
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rozemarijn Vliegenthart
- Dept of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Scanner thoracique chez l’enfant atteint de mucoviscidose : intérêt d’un protocole en expiration séquentielle pour réduire la dose d’irradiation. Rev Mal Respir 2020; 37:355-363. [DOI: 10.1016/j.rmr.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 03/04/2020] [Indexed: 11/23/2022]
|
5
|
Tiddens HAWM, Kuo W, van Straten M, Ciet P. Paediatric lung imaging: the times they are a-changin'. Eur Respir Rev 2018; 27:27/147/170097. [PMID: 29491035 DOI: 10.1183/16000617.0097-2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
Until recently, functional tests were the most important tools for the diagnosis and monitoring of lung diseases in the paediatric population. Chest imaging has gained considerable importance for paediatric pulmonology as a diagnostic and monitoring tool to evaluate lung structure over the past decade. Since January 2016, a large number of papers have been published on innovations in chest computed tomography (CT) and/or magnetic resonance imaging (MRI) technology, acquisition techniques, image analysis strategies and their application in different disease areas. Together, these papers underline the importance and potential of chest imaging and image analysis for today's paediatric pulmonology practice. The focus of this review is chest CT and MRI, as these are, and will be, the modalities that will be increasingly used by most practices. Special attention is given to standardisation of image acquisition, image analysis and novel applications in chest MRI. The publications discussed underline the need for the paediatric pulmonology community to implement and integrate state-of-the-art imaging and image analysis modalities into their structure-function laboratory for the benefit of their patients.
Collapse
Affiliation(s)
- Harm A W M Tiddens
- Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands .,Radiology and Nuclear Medicine, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Wieying Kuo
- Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands.,Radiology and Nuclear Medicine, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marcel van Straten
- Radiology and Nuclear Medicine, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands.,Radiology and Nuclear Medicine, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|