1
|
Chadda KR, Puthucheary Z. Persistent inflammation, immunosuppression, and catabolism syndrome (PICS): a review of definitions, potential therapies, and research priorities. Br J Anaesth 2024; 132:507-518. [PMID: 38177003 PMCID: PMC10870139 DOI: 10.1016/j.bja.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024] Open
Abstract
Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) is a clinical endotype of chronic critical illness. PICS consists of a self-perpetuating cycle of ongoing organ dysfunction, inflammation, and catabolism resulting in sarcopenia, immunosuppression leading to recurrent infections, metabolic derangements, and changes in bone marrow function. There is heterogeneity regarding the definition of PICS. Currently, there are no licensed treatments specifically for PICS. However, findings can be extrapolated from studies in other conditions with similar features to repurpose drugs, and in animal models. Drugs that can restore immune homeostasis by stimulating lymphocyte production could have potential efficacy. Another treatment could be modifying myeloid-derived suppressor cell (MDSC) activation after day 14 when they are immunosuppressive. Drugs such as interleukin (IL)-1 and IL-6 receptor antagonists might reduce persistent inflammation, although they need to be given at specific time points to avoid adverse effects. Antioxidants could treat the oxidative stress caused by mitochondrial dysfunction in PICS. Possible anti-catabolic agents include testosterone, oxandrolone, IGF-1 (insulin-like growth factor-1), bortezomib, and MURF1 (muscle RING-finger protein-1) inhibitors. Nutritional support strategies that could slow PICS progression include ketogenic feeding and probiotics. The field would benefit from a consensus definition of PICS using biologically based cut-off values. Future research should focus on expanding knowledge on underlying pathophysiological mechanisms of PICS to identify and validate other potential endotypes of chronic critical illness and subsequent treatable traits. There is unlikely to be a universal treatment for PICS, and a multimodal, timely, and personalised therapeutic strategy will be needed to improve outcomes for this growing cohort of patients.
Collapse
Affiliation(s)
- Karan R Chadda
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK; Homerton College, University of Cambridge, Cambridge, UK; Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Zudin Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK; Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
2
|
Efron PA, Brakenridge SC, Mohr AM, Barrios EL, Polcz VE, Anton S, Ozrazgat-Baslanti T, Bihorac A, Guirgis F, Loftus TJ, Rosenthal M, Leeuwenburgh C, Mankowski R, Moldawer LL, Moore FA. The persistent inflammation, immunosuppression, and catabolism syndrome 10 years later. J Trauma Acute Care Surg 2023; 95:790-799. [PMID: 37561664 PMCID: PMC10615691 DOI: 10.1097/ta.0000000000004087] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
With the implementation of new intensive care unit (ICU) therapies in the 1970s, multiple organ failure (MOF) emerged as a fulminant inflammatory phenotype leading to early ICU death. Over the ensuing decades, with fundamental advances in care, this syndrome has evolved into a lingering phenotype of chronic critical illness (CCI) leading to indolent late post-hospital discharge death. In 2012, the University of Florida (UF) Sepsis Critical Illness Research Center (SCIRC) coined the term Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) to provide a mechanistic framework to study CCI in surgical patients. This was followed by a decade of research into PICS-CCI in surgical ICU patients in order to define the epidemiology, dysregulated immunity, and long-term outcomes after sepsis. Other focused studies were performed in trauma ICU patients and emergency department sepsis patients. Early deaths were surprisingly low (4%); 63% experienced rapid recovery. Unfortunately, 33% progressed to CCI, of which 79% had a poor post-discharge disposition and 41% were dead within one year. These patients had biomarker evidence of PICS, and these biomarkers enhanced clinical prediction models for dismal one-year outcomes. Emergency myelopoiesis appears to play a central role in the observed persistent immune dysregulation that characterizes PICS-CCI. Older patients were especially vulnerable. Disturbingly, over half of the older CCI patients were dead within one year and older CCI survivors remained severely disabled. Although CCI is less frequent (20%) after major trauma, PICS appears to be a valid concept. This review will specifically detail the epidemiology of CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effect on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, dysregulated erythropoiesis, and potential therapeutic interventions. A review of UF SCIRC’s research efforts characterizing CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effects on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, and dysregulated erythropoiesis.
Collapse
Affiliation(s)
- Philip A Efron
- From the Department of Surgery and Anesthesiology (P.A.E., A.M.M., M.R.), University of Florida, Gainesville, Florida, Department of Surgery (S.C.B.), University of Washington, Seattle, Washington; Department of Surgery (E.L.B., V.E.P., T.J.L., L.L.M., F.A.M.), Department of Physiology and Aging (S.A., C.L., R.M.), Department of Medicine (T.O.-B., A.B.), University of Florida, Gainesville; and Department of Emergency Medicine (F.G.), University of Florida, Jacksonville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Martindale RG. Novel nutrition strategies to enhance recovery after surgery. JPEN J Parenter Enteral Nutr 2023; 47:476-481. [PMID: 36938940 DOI: 10.1002/jpen.2485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 03/21/2023]
Abstract
Surgery and traumatic injury set off a cascade of metabolic changes that are becoming better understood. Recently, strategies and protocols have been developed for optimizing outcomes, and this has yielded beneficial results. This brief review evaluates three specific nutrition or metabolic interventions in the postoperative setting that attempt to optimize outcomes. We limited this to three subspecialty areas including oncologic surgery, orthopedic surgery, and cardiac surgery. These agents included fish oils, factors to prevent dysbiosis, and resistance exercise and its role in enhancing protein update. Where these novel agents fit into the basic tenets of postoperative nutrition interventions does not change the narrative: deliver graduated early enteral feeding to attenuate the metabolic response to surgical stress, maintain the gastrointestinal mucosal barrier, use immune/metabolic modulation to enhance immune response while attenuating excessive inflammation, and support the microbiome.
Collapse
Affiliation(s)
- Robert G Martindale
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Erens C, Van Broeckhoven J, Bronckaers A, Lemmens S, Hendrix S. The Dark Side of an Essential Amino Acid: L-Arginine in Spinal Cord Injury. J Neurotrauma 2023; 40:820-832. [PMID: 36503258 DOI: 10.1089/neu.2022.0271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
L-arginine is a semi-essential amino acid involved in a variety of physiological processes in the central nervous system (CNS). It is essential in the survival and functionality of neuronal cells. Nonetheless, L-arginine also has a dark side; it potentiates neuroinflammation and nitric oxide (NO) production, leading to secondary damage. Therefore, modulating the L-arginine metabolism is challenging because both detrimental and beneficial effects are dependent on this semi-essential amino acid. After spinal cord injury (SCI), L-arginine plays a crucial role in trauma-induced neuroinflammation and regenerative processes via the two key enzymes: nitric oxide synthase (NOS) and arginase (ARG). Studies on L-arginine metabolism using ARG and NOS inhibitors highlighted the conflicting role of this semi-essential amino acid. Similarly, L-arginine supplementation resulted in both negative and positive outcomes after SCI. However, new data indicate that arginine depletion substantially improves spinal cord regeneration after injury. Here, we review the challenging characteristics of L-arginine metabolism as a therapeutic target after SCI.
Collapse
Affiliation(s)
- Céline Erens
- Department of Immunology and Infection, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Department of Cardio and Organ Systems, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium
| | - Stefanie Lemmens
- Department of Immunology and Infection, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Vanzant E, Frayman R, Hensley S, Rosenthal M. Should Anabolic Agents be Used for Resolving Catabolism in Post-ICU Recovery? CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Zhang J, Luo W, Miao C, Zhong J. Hypercatabolism and Anti-catabolic Therapies in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Front Nutr 2022; 9:941097. [PMID: 35911117 PMCID: PMC9326442 DOI: 10.3389/fnut.2022.941097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/06/2022] Open
Abstract
Owing to the development of intensive care units, many patients survive their initial insults but progress to chronic critical illness (CCI). Patients with CCI are characterized by prolonged hospitalization, poor outcomes, and significant long-term mortality. Some of these patients get into a state of persistent low-grade inflammation, suppressed immunity, and ongoing catabolism, which was defined as persistent inflammation, immunosuppression, and catabolism syndrome (PICS) in 2012. Over the past few years, some progress has been made in the treatment of PICS. However, most of the existing studies are about the role of persistent inflammation and suppressed immunity in PICS. As one of the hallmarks of PICS, hypercatabolism has received little research attention. In this review, we explore the potential pathophysiological changes and molecular mechanisms of hypercatabolism and its role in PICS. In addition, we summarize current therapies for improving the hypercatabolic status and recommendations for patients with PICS.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Wenchen Luo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
- Department of Anesthesiology, Zhongshan Wusong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- *Correspondence: Jing Zhong,
| |
Collapse
|
7
|
Bass GA, Dzierba AL, Taylor B, Lane-Fall M, Kaplan LJ. Tertiary peritonitis: considerations for complex team-based care. Eur J Trauma Emerg Surg 2022; 48:811-825. [PMID: 34302503 PMCID: PMC8308068 DOI: 10.1007/s00068-021-01750-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022]
Abstract
Peritonitis, as a major consequence of hollow visceral perforation, anastomotic disruption, ischemic necrosis, or other injuries of the gastrointestinal tract, often drives acute care in the emergency department, operating room, and the ICU. Chronic critical illness (CCI) represents a devastating challenge in modern surgical critical care where successful interventions have fostered a growing cohort of patients with prolonged dependence on mechanical ventilation and other organ supportive therapies who would previously have succumbed much earlier in the acute phase of critical illness. An important subset of CCI patients are those who have survived an emergency abdominal operation, but who subsequently require prolonged open abdomen management complicated by persistent peritoneal space infection or colonization, fistula formation, and gastrointestinal (GI) tract dysfunction; these patients are described as having tertiary peritonitis (TP).The organ dysfunction cascade in TP terminates in death in between 30 and 64% of patients. This narrative review describes key-but not all-elements in a framework for the coordinate multiprofessional team-based management of a patient with tertiary peritonitis to mitigate this risk of death and promote recovery. Given the prolonged critical illness course of this unique patient population, early and recurrent Palliative Care Medicine consultation helps establish goals of care, support adjustment to changes in life circumstance, and enable patient and family centered care.
Collapse
Affiliation(s)
- Gary Alan Bass
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, 51 N. 39th Street, MOB 1, Suite 120, Philadelphia, PA 19104 USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, USA
- European Society of Trauma and Emergency Surgery, Visceral Trauma Section, Philadelphia, USA
| | - Amy L. Dzierba
- Department of Pharmacy, New York-Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY USA
| | - Beth Taylor
- Department of Research for Patient Care Services, Barnes-Jewish Hospital, St. Louis, MO USA
| | - Meghan Lane-Fall
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 5 Dulles, Philadelphia, PA 19104 USA
| | - Lewis J. Kaplan
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, 51 N. 39th Street, MOB 1, Suite 120, Philadelphia, PA 19104 USA
- Surgical Services, Section of Surgical Critical Care, Corporal Michael J Crescenz VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104 USA
| |
Collapse
|
8
|
Dmitriev AV, Machulina IA, Shestopalov AE. [Glutamine as a component of nutritional and metabolic therapy for surgical patients in ICU]. Khirurgiia (Mosk) 2021:98-106. [PMID: 34363451 DOI: 10.17116/hirurgia202108198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glutamine is the most abundant amino acid in the human body that is involved in various metabolic processes. The development of hypermetabolic and hypercatabolic syndrome that accompanies critical conditions of ICU patients is associated with a decrease in the concentration of glutamine, especially in the blood plasma and muscles. This process may last for quite a long time and lead to a number of complications up to a fatal outcome. This review was aimed to analyze clinical studies conducted over the past 20 years that demonstrate the effect of intravenous infusion of glutamine dipeptide as part of balanced parenteral nutrition on the perioperative period: the severity of inflammatory response; the state of the intestinal mucosa; the incidence and severity of complications; mortality; the duration of stay in the ICU and hospital in general, etc. The analysis was performed using systematic reviews and meta-analyses based on randomized double-blind, placebo-controlled trials in different countries selected in the main databases (PubMed, EMBASE, Web of Science, The Cochrane Library, etc.). Most of the reports state that the inclusion of glutamine dipeptide in nutritional and metabolic therapy (NMT) in surgical patients reduces the frequency and severity of infectious complications and mortality, reduces the length of stay in ICU and in hospital in general, improves the biochemical parameters that reflect the condition of patients, and reduces the treatment costs. Thus, the conducted systematic reviews and meta-analyses confirm that the use of the parenteral form of glutamine dipeptide (Dipeptiven 20%) as part of balanced standard parenteral nutrition (PN) is a clinically and pharmacoeconomically justified strategy of NMT in surgical ICU patients.
Collapse
Affiliation(s)
- A V Dmitriev
- Northwest Society for Parenteral and Enteral Nutrition, Saint Petersbur, Northwest Society for Parenteral and Enteral Nutrition, Saint Petersburg
| | - I A Machulina
- SBHI City Clinical Hospital No. 70 named after E.O. Mukhin of the Moscow City Health Department, Mosco, SBHI City Clinical Hospital No. 70 named after E.O. Mukhin of the Moscow City Health Department, Moscow
| | - A E Shestopalov
- FSBE FPE Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Mosco, FSBE FPE Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow.,FSBI N.N. Burdenko Main Military Clinical Hospital of the Ministry of Defense of Russia, Mosco, FSBI N.N. Burdenko Main Military Clinical Hospital of the Ministry of Defense of Russia, Moscow
| |
Collapse
|
9
|
Chronic Critical Illness and PICS Nutritional Strategies. J Clin Med 2021; 10:jcm10112294. [PMID: 34070395 PMCID: PMC8197535 DOI: 10.3390/jcm10112294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
The nutritional hallmark of chronic critical illness (CCI) after sepsis is persistent inflammation, immunosuppression, and catabolism syndrome (PICS), which results in global resistance to the anabolic effect of nutritional supplements. This ultimately leaves these patients in a downward phenotypic spiral characterized by cachexia with profound weakness, decreased capacity for rehabilitation, and immunosuppression with the propensity for sepsis recidivism. The persistent catabolism is driven by a pathologic low-grade inflammation with the inability to return to homeostasis and by ongoing increased energy expenditure. Better critical care support systems and advances in technology have led to increased intensive care unit (ICU) survival, but CCI due to PICS with poor long-term outcomes has emerged as a frequent phenotype among ICU sepsis survivors. Unfortunately, therapies to mitigate or reverse PICS-CCI are limited, and recent evidence supports that these patients fail to respond to early ICU evidence-based nutrition protocols. A lack of randomized controlled trials has limited strong recommendations for nutrition adjuncts in these patients. However, based on experience in other conditions characterized by a similar phenotype, immunonutrients aimed at counteracting inflammation, immunosuppression, and catabolism may be important for improving outcomes in PICS-CCI patients. This manuscript intends to review several immunonutrients as adjunctive therapies in treating PICS-CCI.
Collapse
|
10
|
Abstract
Malnutrition and issues of nutrition are common in hospitalized patients. Identifying patients at nutritional risk can help to improve hospital-related outcomes. Specialized nutritional support in the form of oral nutritional supplementation, enteral nutrition, and parenteral nutrition is essential to meeting the nutritional needs of many patients. Disease-specific nutritional considerations are fundamental to the quality care of hospitalized patients. Many vitamin, macronutrient, and micronutrient deficiencies are relevant in hospital setting.
Collapse
|
11
|
Effects of parenteral glutamine in critically ill surgical patients: a systematic review and meta-analysis. NUTR HOSP 2020; 34:616-621. [PMID: 32338020 DOI: 10.20960/nh.02949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: glutamine (GLN), the most abundant non-essential amino acid in the plasma, tends to be rapidly depleted in cells in situations of metabolic stress. Some studies have demonstrated the benefits of GLN supplementation on mortality, infection, and length of hospital stay. The objective of this review was to analyze whether parenteral supplementation with GLN has any relevant effect in critically ill surgical patients. Methods: based on a systematic database search, randomized clinical trials (RCTs) published since 1985 were included if they had evaluated the effect of parenteral GLN supplementation in critical surgical patients. The statistical analysis was performed using the RevMan 5.3 software. Results: seven RCTs were eligible for the meta-analysis. Parenteral glutamine supplementation was associated with a non-significant 24 % reduction in mortality (RR = 0.76; 95 % CI: 0.50-1.15). Infections were significantly reduced (RR = 0.60; 95 % CI: 0.45-0.80), and length of hospital stay was 4.09 days shorter (95 % CI: -6.71 to -1.46). Conclusion: parenteral GLN usage in critical surgical patients seems to decrease infection and length of hospital stay, but we could not demonstrate a significant reduction in mortality.
Collapse
|
12
|
Blears E, Sommerhalder C, Toliver-Kinsky T, Finnerty CC, Herndon DN. Current problems in burn immunology. Curr Probl Surg 2020; 57:100779. [PMID: 32507131 DOI: 10.1016/j.cpsurg.2020.100779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Elizabeth Blears
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | | | - Tracy Toliver-Kinsky
- Department of Anesthesiology, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX.
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX; Shriners Hospitals for Children, Galveston, TX
| | | |
Collapse
|
13
|
Intravenous Arginine Administration Downregulates NLRP3 Inflammasome Activity and Attenuates Acute Kidney Injury in Mice with Polymicrobial Sepsis. Mediators Inflamm 2020; 2020:3201635. [PMID: 32454788 PMCID: PMC7238342 DOI: 10.1155/2020/3201635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/29/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is a major complication of sepsis. Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes are multiprotein complexes that mediate septic AKI. L-arginine (Arg) is a conditionally essential amino acid in catabolic conditions and a substrate for nitric oxide (NO) production; however, its use in sepsis is controversial. This study investigated the effect of intravenous Arg supplementation on modulating NLRP3 inflammasome activity in relation to septic AKI. Mice were divided into normal control (NC), sham, sepsis saline (SS), and sepsis Arg (SA) groups. In order to investigate the role of NO, L-N6-(1-iminoethyl)-lysine hydrochloride (L-NIL), an inducible NO synthase inhibitor, was administered to the sepsis groups. Sepsis was induced using cecal ligation and puncture (CLP). The SS and SA groups received saline or Arg via tail vein 1 h after CLP. Mice were sacrificed at 6, 12, and 24 h after sepsis. The results showed that compared to the NC group, septic mice had higher plasma kidney function parameters and lower Arg levels. Also, renal NLRP3 inflammasome protein expression and tubular injury score increased. After Arg treatment, plasma Arg and NO levels increased, kidney function improved, and expressions of renal NLRP3 inflammasome-related proteins were downregulated. Changes in plasma NO and renal NLRP3 inflammasome-related protein expression were abrogated when L-NIL was given to the Arg sepsis groups. Arg plus L-NIL administration also attenuated kidney injury after CLP. The findings suggest that intravenous Arg supplementation immediately after sepsis restores plasma Arg levels and is beneficial for attenuating septic AKI, partly via NO-mediated NLRP3 inflammasome inhibition.
Collapse
|
14
|
Wu J, Lin M. Effects of specific nutrients on immune modulation in patients with gastrectomy. Ann Gastroenterol Surg 2020; 4:14-20. [PMID: 32021954 PMCID: PMC6992678 DOI: 10.1002/ags3.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent and lethal malignant neoplasms worldwide. The main treatment for GC is gastrectomy, which generally causes considerable metabolic stress to patients. To modulate cell function, maintain homeostasis of the immune response, reduce postoperative complications, and obtain favorable outcomes, physicians prescribe specific nutrients with immunomodulatory properties as supplementation to enteral or parenteral formulas, indicating immunonutrition. In the formulas, among the immunonutrients, glutamine, arginine, and n-3 polyunsaturated fatty acids are the most commonly used either alone or in combination. The present review summarizes and focuses on the evidence obtained from clinical trials and animal studies supporting the role of immunonutrients supplemented enterally or parenterally in total or subtotal gastrectomy. In addition, this review describes the possible molecular mechanisms underlying the protective action of these immunonutrients, which may contribute to therapeutic approaches to improve postoperative outcomes of gastrectomy. Combination of conventional therapy with immunonutrition seems to be a useful strategy to achieve synergistic effects in the treatment of GC patients.
Collapse
Affiliation(s)
- Jin‐Ming Wu
- Department of SurgeryNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Ming‐Tsan Lin
- Department of SurgeryNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
15
|
Rosenthal MD, Patel J, Staton K, Martindale RG, Moore FA, Upchurch GR. Can Specialized Pro-resolving Mediators Deliver Benefit Originally Expected from Fish Oil? Curr Gastroenterol Rep 2018; 20:40. [PMID: 30078085 DOI: 10.1007/s11894-018-0647-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW Fish oil (FO) supplementation has historically been used by individuals suffering from cardiovascular disease and other inflammatory processes. However, a meta-analysis of several large randomized control trials (RCTs) suggested FO conferred no benefit in reducing cardiovascular risk. Skeptics surmised that the lack of benefit was related to FO dose or drug interactions; therefore, the widely accepted practice of FO consumption was brought into question. RECENT FINDINGS Thereafter, Serhan et al. identified specialized pro-resolving mediators (SPMs) to be one of the bioactive components and mechanisms of action of FO. SPMs are thought to enhance resolution of inflammation, as opposed to classic anti-inflammatory agents which inhibit inflammatory pathways. Numerous diseases, including persistent Inflammation, immunosuppression, and catabolic syndrome (PICS), are rooted in a burden of chronic inflammation. SPMs are gaining traction as potential therapeutic agents used to resolve inflammation in cardiovascular disorders, inflammatory bowel disease, sepsis, pancreatitis, and acute respiratory distress syndrome (ARDS). This narrative reviews the history of FO and the various studies that made the health benefits of FO inconclusive, as well as an overview of SPMs and their use in specific disease states.
Collapse
Affiliation(s)
- Martin D Rosenthal
- Department of Surgery, Division of Trauma and Acute Care Surgery, University of Florida College of Medicine, PO Box 10019, Gainesville, FL, 32610-0019, USA.
| | - Jayshil Patel
- Department of Medicine, Division of Pulmonary Critical Care, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kyle Staton
- Department of Surgery, Division of Trauma and Acute Care Surgery, University of Florida College of Medicine, PO Box 10019, Gainesville, FL, 32610-0019, USA
| | - Robert G Martindale
- Department of Surgery, Division Gastroenterology Surgery, Oregon Health Science University, Portland, OR, USA
| | - Frederick A Moore
- Department of Surgery, Division of Trauma and Acute Care Surgery, University of Florida College of Medicine, PO Box 10019, Gainesville, FL, 32610-0019, USA
| | - Gilbert R Upchurch
- Department of Surgery, Division of Vascular Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe established and emerging mechanisms of gut injury and dysfunction in trauma, describe emerging strategies to improve gut dysfunction, detail the effect of trauma on the gut microbiome, and describe the gut-brain connection in traumatic brain injury. RECENT FINDINGS Newer data suggest intraluminal contents, pancreatic enzymes, and hepatobiliary factors disrupt the intestinal mucosal layer. These mechanisms serve to perpetuate the inflammatory response leading to multiple organ dysfunction syndrome (MODS). To date, therapies to mitigate acute gut dysfunction have included enteral nutrition and immunonutrition; emerging therapies aimed to intestinal mucosal layer disruption, however, include protease inhibitors such as tranexamic acid, parenteral nutrition-supplemented bombesin, and hypothermia. Clinical trials to demonstrate benefit in humans are needed before widespread applications can be recommended. SUMMARY Despite resuscitation, gut dysfunction promotes distant organ injury. In addition, postresuscitation nosocomial and iatrogenic 'hits' exaggerate the immune response, contributing to MODS. This was a provocative concept, suggesting infectious and noninfectious causes of inflammation may trigger, heighten, and perpetuate an inflammatory response culminating in MODS and death. Emerging evidence suggests posttraumatic injury mechanisms, such as intestinal mucosal disruption and shifting of the gut microbiome to a pathobiome. In addition, traumatic brain injury activates the gut-brain axis and increases intestinal permeability.
Collapse
|
17
|
Rosenthal MD, Kamel AY, Rosenthal CM, Brakenridge S, Croft CA, Moore FA. Chronic Critical Illness: Application of What We Know. Nutr Clin Pract 2018; 33:39-45. [PMID: 29323761 DOI: 10.1002/ncp.10024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/08/2017] [Indexed: 12/16/2022] Open
Abstract
Over the last decade, chronic critical illness (CCI) has emerged as an epidemic in intensive care unit (ICU) survivors worldwide. Advances in ICU technology and implementation of evidence-based care bundles have significantly decreased early deaths and have allowed patients to survive previously lethal multiple organ failure (MOF). Many MOF survivors, however, experience a persistent dysregulated immune response that is causing an increasingly predominant clinical phenotype called the persistent inflammation, immunosuppression, and catabolism syndrome (PICS). The elderly are especially vulnerable; thus, as the population ages the prevalence of this CCI/PICS clinical trajectory will undoubtedly grow. Unfortunately, there are no proven therapies to prevent PICS, and multimodality interventions will be required. The purpose of this review is to: (1) discuss CCI as it relates to PICS, (2) identify the burden on healthcare and poor outcomes of these patients, and (3) describe possible nutrition interventions for the CCI/PICS phenotype.
Collapse
Affiliation(s)
- Martin D Rosenthal
- Department of Surgery, Division of Acute Care Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Amir Y Kamel
- Department of Pharmacy, UF Health, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | | | - Scott Brakenridge
- Department of Surgery, Division of Acute Care Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Chasen A Croft
- Department of Surgery, Division of Acute Care Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Frederick A Moore
- Department of Surgery, Division of Acute Care Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
18
|
Abstract
The surgical critically ill patient is subject to a variable and complex metabolic response, which has detrimental effects on immunity, wound healing, and preservation of lean body muscle. The concept of nutrition support has evolved into nutrition therapy, whereby the primary objectives are to prevent oxidative cell injury, modulate the immune response, and attenuate the metabolic response. This review outlines the metabolic response to critical illness, describes nutritional risk; reviews the evidence for the role, dose, and timing of enteral and parenteral nutrition, and reviews the evidence for immunonutrition in the surgical intensive care unit.
Collapse
|
19
|
Abstract
OBJECTIVE To achieve consensus on the best practices in the management of ventral hernias (VH). BACKGROUND Management patterns for VH are heterogeneous, often with little supporting evidence or correlation with existing evidence. METHODS A systematic review identified the highest level of evidence available for each topic. A panel of expert hernia-surgeons was assembled. Email questionnaires, evidence review, panel discussion, and iterative voting was performed. Consensus was when all experts agreed on a management strategy. RESULTS Experts agreed that complications with VH repair (VHR) increase in obese patients (grade A), current smokers (grade A), and patients with glycosylated hemoglobin (HbA1C) ≥ 6.5% (grade B). Elective VHR was not recommended for patients with BMI ≥ 50 kg/m (grade C), current smokers (grade A), or patients with HbA1C ≥ 8.0% (grade B). Patients with BMI= 30-50 kg/m or HbA1C = 6.5-8.0% require individualized interventions to reduce surgical risk (grade C, grade B). Nonoperative management was considered to have a low-risk of short-term morbidity (grade C). Mesh reinforcement was recommended for repair of hernias ≥ 2 cm (grade A). There were several areas where high-quality data were limited, and no consensus could be reached, including mesh type, component separation technique, and management of complex patients. CONCLUSIONS Although there was consensus, supported by grade A-C evidence, on patient selection, the safety of short-term nonoperative management, and mesh reinforcement, among experts; there was limited evidence and broad variability in practice patterns in all other areas of practice. The lack of strong evidence and expert consensus on these topics has identified gaps in knowledge where there is need of further evidence.
Collapse
|
20
|
Moore FA, Phillips SM, McClain CJ, Patel JJ, Martindale RG. Nutrition Support for Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Nutr Clin Pract 2017; 32:121S-127S. [PMID: 28166447 DOI: 10.1177/0884533616687502] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Despite tremendous advances in critical care, multiple-organ failure continues to be a significant problem. However, in recent years, far fewer patients with multiple-organ failure die early, but many experience ongoing immune dysregulation and are developing persistent inflammation, immunosuppression, and catabolism syndrome (PICS). Most PICS patients are discharged to nonhome destinations, fail to rehabilitate, and succumb to indolent death. From a nutrition perspective, patients with PICS experience persistent inflammation-induced cachexia despite evidenced-based recommended intensive care unit nutrition support. Recent basic and translational research indicates that prolonged expansion of myeloid-derived suppressor cells plays a central role in the pathogenesis of PICS. Myeloid-derived suppressor cells express arginase 1, which depletes arginine, causing immunosuppression and impaired wound healing. This is the rationale for arginine supplementation in PICS. Other nutrition support recommendations for PICS are based on inferences made from other patient populations who experience similar persistent inflammation-induced cachexia. These include patients with established cancers, major burns, and sarcopenia. These patients experience anabolic resistance, but studies show that this can be overcome by providing higher levels of protein and certain specific amino acids. Nutrition support guidelines recommend provision of >1.5 g/kg/d of protein and indicate that higher levels may be needed. Protein composition is also important. There is good evidence that leucine can promote anabolism in patients with cancer and sarcopenia. Finally, anabolic interventions-including intensive insulin, oxandrolone, propranolol, and resistance exercise-have proven to be effective in patients with major burns and are likely relevant in combating PICS cachexia.
Collapse
|
21
|
Rosenthal MD, Carrott PW, Patel J, Kiraly L, Martindale RG. Parenteral or Enteral Arginine Supplementation Safety and Efficacy. J Nutr 2016; 146:2594S-2600S. [PMID: 27934650 DOI: 10.3945/jn.115.228544] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Arginine supplementation has the potential to improve the health of patients. Its use in hospitalized patients has been a controversial topic in the nutrition literature, especially concerning supplementation of septic patients. In this article, we review the relevant literature both for and against the use of arginine in critically ill, surgical, and hospitalized patients. The effect of critical illness on arginine metabolism is reviewed, as is its use in septic and critically ill patients. Although mounting evidence supports immunonutrition, there are only a few studies that suggest that this is safe in patients with severe sepsis. The use of arginine has been shown to benefit a variety of critically ill patients. It should be considered for inclusion in combinations of immunonutrients or commercial formulations for groups in whom its benefit has been reported consistently, such as those who have suffered trauma and those in acute surgical settings. The aims of this review are to discuss the role of arginine in health, the controversy surrounding arginine supplementation of septic patients, and the use of arginine in critically ill patients.
Collapse
Affiliation(s)
- Martin D Rosenthal
- Division of Acute Care Surgery, Department of Surgery, and.,Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Phillip W Carrott
- Section of Cardiothoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jayshil Patel
- Division of Pulmonary Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; and
| | - Laszlo Kiraly
- Division of Gastrointestinal Surgery, Department of Surgery, Oregon Health and Science University, Portland, OR
| | - Robert G Martindale
- Division of Gastrointestinal Surgery, Department of Surgery, Oregon Health and Science University, Portland, OR
| |
Collapse
|
22
|
Affiliation(s)
- Arlene A. Escuro
- Center for Human Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - A. Christine Hummell
- Center for Human Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Costa BP, Martins P, Veríssimo C, Simões M, Tomé M, Grazina M, Pimentel J, Castro-Sousa F. Argininemia and plasma arginine bioavailability - predictive factors of mortality in the severe trauma patients? Nutr Metab (Lond) 2016; 13:60. [PMID: 27582779 PMCID: PMC5006376 DOI: 10.1186/s12986-016-0118-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Arginine is an amino acid determinant in the metabolic, immune and reparative responses to severe trauma. The present study aims to determine argininemia and plasma arginine bioavailability (PAB) in critical trauma patients and to analyze its correlation with prognosis. METHODS A prospective study of 23 critical trauma patients was undertaken. Aminoacidemias were determined, by ion exchange chromatography, at admission and in the first and third days and compared with those of 11 healthy individuals. PAB was calculated. Severity indexes and outcome parameters were recorded. RESULTS Values of argininemia, citrullinemia and ornithinemia at the admission were significantly lower than those of the controls (arginine: 41.2 ± 20.6 versus 56.1 ± 11.9 μmol/L, P = 0.034). Hipoargininemia (<60 μmol/L) prevalence was 82.6 %. Mean PAB was 62.4 ± 25.6 %. Argininemia < 26 μmol/L constituted a significant predictive factor of in-hospital mortality [n = 4 (17.4 %); 75 versus 15.8 %, P = 0.04; odds ratio = 4.7; accuracy = 87 %] and lower actuarial survival (63.5 ± 43.9 versus 256.1 ± 33.3 days, P = 0.031). PAB <42 % [n = 6 (26.1 %)] was associated with higher lactacidemia levels (P = 0.033), higher in-hospital mortality (66.7 versus 11.8 %, P = 0.021; odds ratio = 5.7, accuracy = 82.6 %) and lower actuarial survival (87.2 ± 37.5 versus 261.4 ± 34.7 days, n.s.). Probability of in-hospital mortality was inversely and significantly related with PAB [61.8 ± 8.8 % (95 % CI 50.8-72.7) when PAB <41 % and 2.8 ± 1.9 % (95 % CI 1.9-8.3) when PAB > 81 %, P = 0.0001]. Charlson's index ≥1, APACHE II ≥19.5, SOFA ≥7.5, and glutaminemia < 320 μmol/L were also predictive factors of actuarial survival. CONCLUSIONS Those results confirm the high prevalence of arginine depletion in severe trauma patients and the relevance of argininemia and PAB as predictive factors of mortality in this context.
Collapse
Affiliation(s)
- Beatriz P. Costa
- “A” Surgical Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Martins
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Intensive Medicine Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Carla Veríssimo
- Genetic Biochemistry Department, Center for Neurosciences and Cellular Biology of Coimbra University, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Marta Simões
- Genetic Biochemistry Department, Center for Neurosciences and Cellular Biology of Coimbra University, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Marisa Tomé
- “A” Surgical Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
| | - Manuela Grazina
- Genetic Biochemistry Department, Center for Neurosciences and Cellular Biology of Coimbra University, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jorge Pimentel
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Intensive Medicine Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Francisco Castro-Sousa
- “A” Surgical Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Rosenthal MD, Brakenridge S, Rosenthal CM, Moore FA. Nutritional Support in the Setting of Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). CURRENT SURGERY REPORTS 2016. [DOI: 10.1007/s40137-016-0152-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
McCleary EJ, Tajchman S. Parenteral Nutrition and Infection Risk in the Intensive Care Unit: A Practical Guide for the Bedside Clinician. Nutr Clin Pract 2016; 31:476-89. [PMID: 27317614 DOI: 10.1177/0884533616653808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The safety of parenteral nutrition (PN) administration in critically ill patients has been the subject of much controversy. Historically, PN administration has been associated with an increased risk of bacterial and fungal infections, leading to significant morbidity and mortality. Much of the data showing increased infectious complications compared with either no nutrition or enteral nutrition was derived from early studies conducted in the 1980s-2000s. Poor glucose control and hyperalimentation are confounding factors in many early studies, making it difficult to determine the true PN infection risks. While PN studies conducted during the past 10 years have failed to show the same infection rates, these risks continue to be cited as dogma. Potential reasons for such discordant results include improved glycemic control, avoidance of overfeeding, and improved sterility and central venous catheter care. Understanding the true infectious risk of PN administration in the intensive care unit is necessary to optimize patient care, as inappropriately withholding such nutrition is potentially deleterious. This review is meant to serve as a practical guide to the bedside clinician who is evaluating the risks and benefits of initiating PN in a critically ill patient. Each component of PN will be evaluated based on risk of infection, and the potential ways to mitigate risks will be discussed.
Collapse
Affiliation(s)
- Emily J McCleary
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sharla Tajchman
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
|