1
|
Proteome profiling of human placenta reveals developmental stage-dependent alterations in protein signature. Clin Proteomics 2021; 18:18. [PMID: 34372761 PMCID: PMC8351416 DOI: 10.1186/s12014-021-09324-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Placenta is a complex organ that plays a significant role in the maintenance of pregnancy health. It is a dynamic organ that undergoes dramatic changes in growth and development at different stages of gestation. In the first-trimester, the conceptus develops in a low oxygen environment that favors organogenesis in the embryo and cell proliferation and angiogenesis in the placenta; later in pregnancy, higher oxygen concentration is required to support the rapid growth of the fetus. This oxygen transition, which appears unique to the human placenta, must be finely tuned through successive rounds of protein signature alterations. This study compares placental proteome in normal first-trimester (FT) and term human placentas (TP). Methods Normal human first-trimester and term placental samples were collected and differentially expressed proteins were identified using two-dimensional liquid chromatography-tandem mass spectrometry. Results Despite the overall similarities, 120 proteins were differently expressed in first and term placentas. Out of these, 72 were up-regulated and 48 were down-regulated in the first when compared with the full term placentas. Twenty out of 120 differently expressed proteins were sequenced, among them seven showed increased (GRP78, PDIA3, ENOA, ECH1, PRDX4, ERP29, ECHM), eleven decreased (TRFE, ALBU, K2C1, ACTG, CSH2, PRDX2, FABP5, HBG1, FABP4, K2C8, K1C9) expression in first-trimester compared to the full-term placentas and two proteins exclusively expressed in first-trimester placentas (MESD, MYDGF). Conclusion According to Reactome and PANTHER softwares, these proteins were mostly involved in response to chemical stimulus and stress, regulation of biological quality, programmed cell death, hemostatic and catabolic processes, protein folding, cellular oxidant detoxification, coagulation and retina homeostasis. Elucidation of alteration in protein signature during placental development would provide researchers with a better understanding of the critical biological processes of placentogenesis and delineate proteins involved in regulation of placental function during development. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09324-y.
Collapse
|
2
|
Rosario FJ, Powell TL, Gupta MB, Cox L, Jansson T. mTORC1 Transcriptional Regulation of Ribosome Subunits, Protein Synthesis, and Molecular Transport in Primary Human Trophoblast Cells. Front Cell Dev Biol 2020; 8:583801. [PMID: 33324640 PMCID: PMC7726231 DOI: 10.3389/fcell.2020.583801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanistic Target of Rapamycin Complex 1 (mTORC1) serves as positive regulator of placental nutrient transport and mitochondrial respiration. The role of mTORC1 signaling in modulating other placental functions is largely unexplored. We used gene array following silencing of raptor to identify genes regulated by mTORC1 in primary human trophoblast (PHT) cells. Seven hundred and thirty-nine genes were differentially expressed; 487 genes were down-regulated and 252 up-regulated. Bioinformatic analyses demonstrated that inhibition of mTORC1 resulted in decreased expression of genes encoding ribosomal proteins in the 60S and 40S ribosome subunits. Furthermore, down-regulated genes were functionally enriched in genes involved in eIF2, sirtuin and mTOR signaling, mitochondrial function, and glutamine and zinc transport. Stress response genes were enriched among up-regulated genes following mTORC1 inhibition. The protein expression of ribosomal proteins RPL26 (RPL26) and Ribosomal Protein S10 (RPS10) was decreased and positively correlated to mTORC1 signaling and System A amino acid transport in human placentas collected from pregnancies complicated by intrauterine growth restriction (IUGR). In conclusion, mTORC1 signaling regulates the expression of trophoblast genes involved in ribosome and protein synthesis, mitochondrial function, lipid metabolism, nutrient transport, and angiogenesis, representing novel links between mTOR signaling and multiple placental functions critical for normal fetal growth and development.
Collapse
Affiliation(s)
- Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Madhulika B. Gupta
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Laura Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Zhang H, Dou X, Li Z, Zhang Y, Zhang J, Guo F, Wang Y, Wang Z, Li T, Gu X, Chen C. Expression and regulation of the ery operon of Brucella melitensis in human trophoblast cells. Exp Ther Med 2016; 12:2723-2728. [PMID: 27698777 DOI: 10.3892/etm.2016.3688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/18/2016] [Indexed: 11/05/2022] Open
Abstract
Brucellosis is primarily a disease of domestic animals in which the bacteria localizes to fetal tissues such as embryonic trophoblast cells and fluids containing erythritol, which stimulates Brucella spp. growth. The utilization of erythritol is a characteristic of the genus Brucella. The ery operon contains four genes (eryA, eryB, eryC and eryD) for the utilization of erythritol, and plays a major role in the survival and multiplication of Brucella spp. The objective of the present study was to conduct a preliminary characterization of differential genes expression of the ery operon at several time points after Brucella infected embryonic trophoblast cells (HPT-8 cells). The result showed that the ery operon expression was higher in HPT-8 cells compared with the medium. The relative expression of eryA, eryB and eryC peaked at 2 h post-infection in HPT-8 cells, and eryD expression peaked at 3 h post-infection. The expression of eryA, eryB and eryC may be inhibited by increased eryD expression. However, the expression of the ery operon was stable in the presence of erythritol in cells. 2308Δery and 027Δery mutants of the ery operon were successfully constructed by homologous recombination, which were attenuated in RAW 264.7 murine macrophages. The characterization of the ery operon genes and their expression profiles in response to Brucella infection further contributes to our understanding of the molecular mechanisms of infection and the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; Co-Innovation Center for Zoonotic Infectious Diseases in The Western Region, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Xiaoxia Dou
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Zhiqiang Li
- School of Life Sciences, Shangqiu Normal University, Shangqiu, Henan 476000, P.R. China
| | - Yu Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Jing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Fei Guo
- Co-Innovation Center for Zoonotic Infectious Diseases in The Western Region, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yuanzhi Wang
- Co-Innovation Center for Zoonotic Infectious Diseases in The Western Region, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Tiansen Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Xinli Gu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; Co-Innovation Center for Zoonotic Infectious Diseases in The Western Region, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
4
|
An integrative view on the physiology of human early placental villi. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 114:33-48. [PMID: 24291663 DOI: 10.1016/j.pbiomolbio.2013.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
The placenta is an indispensable organ for intrauterine protection, development and growth of the embryo and fetus. It provides tight contact between mother and conceptus, enabling the exchange of gas, nutrients and waste products. The human placenta is discoidal in shape, and bears a hemo-monochorial interface as well as villous materno-fetal interdigitations. Since Peter Medawar's astonishment to the paradoxical nature of the mother-fetus relationship in 1953, substantial knowledge in the domain of placental physiology has been gathered. In the present essay, an attempt has been made to build an integrated understanding of morphological dynamics, cell biology, and functional aspects of genomic and proteomic expression of human early placental villous trophoblast cells followed by a commentary on the future directions of research in this field.
Collapse
|
5
|
Sitras V, Fenton C, Paulssen R, Vårtun Å, Acharya G. Differences in gene expression between first and third trimester human placenta: a microarray study. PLoS One 2012; 7:e33294. [PMID: 22442682 PMCID: PMC3307733 DOI: 10.1371/journal.pone.0033294] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 02/13/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The human placenta is a rapidly developing organ that undergoes structural and functional changes throughout the pregnancy. Our objectives were to investigate the differences in global gene expression profile, the expression of imprinted genes and the effect of smoking in first and third trimester normal human placentas. MATERIALS AND METHODS Placental samples were collected from 21 women with uncomplicated pregnancies delivered at term and 16 healthy women undergoing termination of pregnancy at 9-12 weeks gestation. Placental gene expression profile was evaluated by Human Genome Survey Microarray v.2.0 (Applied Biosystems) and real-time polymerase chain reaction. RESULTS Almost 25% of the genes spotted on the array (n = 7519) were differentially expressed between first and third trimester placentas. Genes regulating biological processes involved in cell proliferation, cell differentiation and angiogenesis were up-regulated in the first trimester; whereas cell surface receptor mediated signal transduction, G-protein mediated signalling, ion transport, neuronal activities and chemosensory perception were up-regulated in the third trimester. Pathway analysis showed that brain and placenta might share common developmental routes. Principal component analysis based on the expression of 17 imprinted genes showed a clear separation of first and third trimester placentas, indicating that epigenetic modifications occur throughout pregnancy. In smokers, a set of genes encoding oxidoreductases were differentially expressed in both trimesters. CONCLUSIONS Differences in global gene expression profile between first and third trimester human placenta reflect temporal changes in placental structure and function. Epigenetic rearrangements in the human placenta seem to occur across gestation, indicating the importance of environmental influence in the developing feto-placental unit.
Collapse
Affiliation(s)
- Vasilis Sitras
- Department of Obstetrics and Gynecology, Akershus University Hospital, Lørenskog, Norway.
| | | | | | | | | |
Collapse
|
6
|
Calleja-Agius J, Jauniaux E, Muttukrishna S. Placental villous expression of TNFα and IL-10 and effect of oxygen tension in euploid early pregnancy failure. Am J Reprod Immunol 2012; 67:515-25. [PMID: 22243719 DOI: 10.1111/j.1600-0897.2012.01104.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/20/2011] [Indexed: 11/27/2022] Open
Abstract
PROBLEM The objective was to investigate placental inflammation in chromosomally normal miscarriages in vivo and in vitro. METHOD OF STUDY Chorionic villous tissue was collected from missed miscarriages and normal gestation-matched controls and cultured at 6 and 20% O(2) concentrations. Tissue was karyotyped. Flowcytometric bead arrays and real-time PCR were carried out for protein and gene expression studies. RESULTS The levels of TNFα and IL-10 were significantly (P < 0.005 and P < 0.05) higher, and the levels of TNF-R1 and TNF-R2 were significantly (P < 0.01 and P < 0.05) lower in culture conditioned medium of villous explants of miscarriages compared to control group. Villous tissue homogenates from miscarriages contained significantly (P < 0.005) lower levels of TNF-R1. There was a significant O(2) -dependent increase in the secretion of IL-10 (P < 0.01) and decrease in TNFα/IL-10 ratio (P < 0.005) in the culture medium in both groups. CONCLUSION Increased levels of TNFα and decreased levels of receptors in miscarriage villous tissue confirm an excessive placental inflammation in miscarriage patients.
Collapse
Affiliation(s)
- Jean Calleja-Agius
- UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, UK.
| | | | | |
Collapse
|
7
|
Enquobahrie DA, Williams MA, Qiu C, Muhie SY, Slentz-Kesler K, Ge Z, Sorenson T. Early pregnancy peripheral blood gene expression and risk of preterm delivery: a nested case control study. BMC Pregnancy Childbirth 2009; 9:56. [PMID: 20003277 PMCID: PMC2799378 DOI: 10.1186/1471-2393-9-56] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 12/10/2009] [Indexed: 11/24/2022] Open
Abstract
Background Preterm delivery (PTD) is a significant public health problem associated with greater risk of mortality and morbidity in infants and mothers. Pathophysiologic processes that may lead to PTD start early in pregnancy. We investigated early pregnancy peripheral blood global gene expression and PTD risk. Methods As part of a prospective study, ribonucleic acid was extracted from blood samples (collected at 16 weeks gestational age) from 14 women who had PTD (cases) and 16 women who delivered at term (controls). Gene expressions were measured using the GeneChip® Human Genome U133 Plus 2.0 Array. Student's T-test and fold change analysis were used to identify differentially expressed genes. We used hierarchical clustering and principle components analysis to characterize signature gene expression patterns among cases and controls. Pathway and promoter sequence analyses were used to investigate functions and functional relationships as well as regulatory regions of differentially expressed genes. Results A total of 209 genes, including potential candidate genes (e.g. PTGDS, prostaglandin D2 synthase 21 kDa), were differentially expressed. A set of these genes achieved accurate pre-diagnostic separation of cases and controls. These genes participate in functions related to immune system and inflammation, organ development, metabolism (lipid, carbohydrate and amino acid) and cell signaling. Binding sites of putative transcription factors such as EGR1 (early growth response 1), TFAP2A (transcription factor AP2A), Sp1 (specificity protein 1) and Sp3 (specificity protein 3) were over represented in promoter regions of differentially expressed genes. Real-time PCR confirmed microarray expression measurements of selected genes. Conclusions PTD is associated with maternal early pregnancy peripheral blood gene expression changes. Maternal early pregnancy peripheral blood gene expression patterns may be useful for better understanding of PTD pathophysiology and PTD risk prediction.
Collapse
|
8
|
Luks FI, Carr SR, Plevyak M, Craigo SD, Athanassiou A, Ralston SJ, Tracy TF. Limited Prognostic Value of a Staging System for Twin-to-Twin Transfusion Syndrome. Fetal Diagn Ther 2004; 19:301-4. [PMID: 15067245 DOI: 10.1159/000076716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Accepted: 10/03/2003] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Severe twin-to-twin transfusion syndrome (TTTS) is usually classified according to a staging system (I-V) based on ultrasonographic findings of polyhydramnios in the recipient, oligohydramnios in the donor, the presence or absence of the donor's bladder, Doppler waveform changes and (impending) hydrops. Stage correlates with the severity of disease, and it is assumed that, without intervention, severe TTTS will evolve in succession from stage I to stage V (fetal demise). However, this progression has not been validated in longitudinal studies. Herein, we report on the natural progression of severe TTTS in a cohort of patients from a regional Fetal Treatment Program. METHODS Eighteen patients with severe TTTS, diagnosed between 15 and 25 weeks of gestation, were managed over a 28-month period. Data were collected until delivery, endoscopic surgical intervention or dual fetal demise. Patients were evaluated at least once a week. Stage, estimated fetal weight, percent recipient/donor body weight discordance and survival were recorded. RESULTS The present study represents a total follow-up of 108 patient-weeks. Of 90 week-to-week evaluations, 65 showed no change in stage; 11 showed downstaging (by more than 1 stage in 3, or 27%), and 13 showed upstaging (by more than 1 stage in 8, or 62%). Nine patients (all stage II or above) underwent endoscopic laser ablation. Overall survival was 67%, and survival of at least 1 twin occurred in 78% of pregnancies. Weight discordance between the donor and recipient did not predict outcome. CONCLUSION The current staging system for severe TTTS may not be helpful in predicting the direction, degree or speed of progression of the condition. Indications for intervention should remain stage-related, and not based on projected progression.
Collapse
Affiliation(s)
- François I Luks
- Fetal Treatment Program, Women and Infants' Hospital and Hasbro Children's Hospital, Providence, RI, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Aronow BJ, Richardson BD, Handwerger S. Microarray analysis of trophoblast differentiation: gene expression reprogramming in key gene function categories. Physiol Genomics 2001; 6:105-16. [PMID: 11459926 DOI: 10.1152/physiolgenomics.2001.6.2.105] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Placental development results from a highly dynamic differentiation program. We used DNA microarray analysis to characterize the process by which human cytotrophoblast cells differentiate into syncytiotrophoblast cells in a purified cell culture system. Of 6,918 genes analyzed, 141 genes were induced and 256 were downregulated by more than 2-fold. Dynamically regulated genes were divided by the K-means algorithm into 9 kinetic pattern groups, then by biologic classification into 6 overall functional categories: cell and tissue structural dynamics, cell cycle and apoptosis, intercellular communication, metabolism, regulation of gene expression, and expressed sequence tag (EST) and function unknown. Gene expression changes within key functional categories were tightly coupled to morphological changes. In several key gene function categories, such as cell and tissue structure, many gene members of the category were strongly activated while others were strongly repressed. These findings suggest that differentiation is augmented by "categorical reprogramming" in which the function of induced genes is enhanced by preventing the further synthesis of categorically related gene products.
Collapse
Affiliation(s)
- B J Aronow
- Departments of Endocrinology and Molecular and Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-2029, USA
| | | | | |
Collapse
|
10
|
|