Mao JJ, Nah HD. Growth and development: hereditary and mechanical modulations.
Am J Orthod Dentofacial Orthop 2004;
125:676-89. [PMID:
15179392 DOI:
10.1016/j.ajodo.2003.08.024]
[Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth and development is the net result of environmental modulation of genetic inheritance. Mesenchymal cells differentiate into chondrogenic, osteogenic, and fibrogenic cells: the first 2 are chiefly responsible for endochondral ossification, and the last 2 for sutural growth. Cells are influenced by genes and environmental cues to migrate, proliferate, differentiate, and synthesize extracellular matrix in specific directions and magnitudes, ultimately resulting in macroscopic shapes such as the nose and the chin. Mechanical forces, the most studied environmental cues, readily modulate bone and cartilage growth. Recent experimental evidence demonstrates that cyclic forces evoke greater anabolic responses of not only craniofacial sutures, but also cranial base cartilage. Mechanical forces are transmitted as tissue-borne and cell-borne mechanical strain that in turn regulates gene expression, cell proliferation, differentiation, maturation, and matrix synthesis, the totality of which is growth and development. Thus, hereditary and mechanical modulations of growth and development share a common pathway via genes. Combined approaches using genetics, bioengineering, and quantitative biology are expected to bring new insight into growth and development, and might lead to innovative therapies for craniofacial skeletal dysplasia including malocclusion, dentofacial deformities, and craniofacial anomalies such as cleft palate and craniosynostosis, as well as disorders associated with the temporomandibular joint.
Collapse