Abstract
How the brain reconstructs three-dimensional object shape from two-dimensional retinal light patterns remains a mystery. Most research has investigated how cues—such as shading, texture, or perspective—help us estimate visible surface points on the outside of objects. However, our findings show the brain achieves much more than this. Observers not only infer the visible outer surface but also the hidden internal structure of objects—seeing “beneath the skin.” Our findings suggest the brain parses shapes’ features according to their physical causes, potentially allowing us to separate a single continuous surface into multiple superimposed depth layers. This ability likely aids our interactions with objects, by indicating which surface locations are firmly supported from the inside and thus suitable for grasping.
Three-dimensional (3D) shape perception is one of the most important functions of vision. It is crucial for many tasks, from object recognition to tool use, and yet how the brain represents shape remains poorly understood. Most theories focus on purely geometrical computations (e.g., estimating depths, curvatures, symmetries). Here, however, we find that shape perception also involves sophisticated inferences that parse shapes into features with distinct causal origins. Inspired by marble sculptures such as Strazza’s The Veiled Virgin (1850), which vividly depict figures swathed in cloth, we created composite shapes by wrapping unfamiliar forms in textile, so that the observable surface relief was the result of complex interactions between the underlying object and overlying fabric. Making sense of such structures requires segmenting the shape based on their causes, to distinguish whether lumps and ridges are due to the shrouded object or to the ripples and folds of the overlying cloth. Three-dimensional scans of the objects with and without the textile provided ground-truth measures of the true physical surface reliefs, against which observers’ judgments could be compared. In a virtual painting task, participants indicated which surface ridges appeared to be caused by the hidden object and which were due to the drapery. In another experiment, participants indicated the perceived depth profile of both surface layers. Their responses reveal that they can robustly distinguish features belonging to the textile from those due to the underlying object. Together, these findings reveal the operation of visual shape-segmentation processes that parse shapes based on their causal origin.
Collapse