Zhang L, Zhu R, Feng A, Zhao C, Chen L, Feng G, Liu L. Redox deracemization of β,γ-alkynyl α-amino esters.
Chem Sci 2020;
11:4444-4449. [PMID:
34122901 PMCID:
PMC8159540 DOI:
10.1039/d0sc00944j]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The first non-enzymatic redox deracemization method using molecular oxygen as the terminal oxidant has been described. The one-pot deracemization of β,γ-alkynyl α-amino esters consisted of a copper-catalyzed aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation with excellent functional group compatibility. By using benzothiazoline as the reducing reagent, an exclusive chemoselectivity at the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N bond over the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond was achieved, allowing for efficient deracemization of a series of α-amino esters bearing diverse α-alkynyl substituent patterns. The origins of chemo- and enantio-selectivities were elucidated by experimental and computational mechanistic investigation. The generality of the strategy is further demonstrated by efficient deracemization of β,γ-alkenyl α-amino esters.
A one-pot deracemization of β,γ-alkynyl α-amino esters consisting of an aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation has been described.![]()
Collapse