1
|
Pochivalov KV, Basko AV, Lebedeva TN, Ilyasova AN, Shandryuk GA, Snegirev VV, Artemov VV, Ezhov AA, Kudryavtsev YV. A New Look at the Structure and Thermal Behavior of Polyvinylidene Fluoride-Camphor Mixtures. Polymers (Basel) 2022; 14:polym14235214. [PMID: 36501608 PMCID: PMC9735715 DOI: 10.3390/polym14235214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
An experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)-camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the eutectic phase diagrams of two low-molar-mass crystalline substances. The phase diagram is used to interpret the polarized light hot-stage microscopy data on cooling the above mixtures from a homogeneous state to room temperature and scanning electron microscopy data on the morphology of capillary-porous bodies formed upon camphor removal. Based on our calorimetry and X-ray studies, we put in doubt the possibility of incongruent crystalline complex formation between PVDF and camphor previously suggested by Dasgupta et al. (Macromolecules 2005, 38, 5602-5608). We also describe and discuss the high-temperature crystalline structure of racemic camphor, which is not available in the modern literature.
Collapse
Affiliation(s)
- Konstantin V. Pochivalov
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia
| | - Andrey V. Basko
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Tatyana N. Lebedeva
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Anna N. Ilyasova
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Georgiy A. Shandryuk
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
| | - Vyacheslav V. Snegirev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1–2, Moscow 119991, Russia
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russia
| | - Alexander A. Ezhov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1–2, Moscow 119991, Russia
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russia
| | - Yaroslav V. Kudryavtsev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russia
- Correspondence:
| |
Collapse
|
2
|
Basko A, Pochivalov K. Current State-of-the-Art in Membrane Formation from Ultra-High Molecular Weight Polyethylene. MEMBRANES 2022; 12:membranes12111137. [PMID: 36422129 PMCID: PMC9696610 DOI: 10.3390/membranes12111137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2023]
Abstract
One of the materials that attracts attention as a potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). One potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). The present review summarizes the results of studies carried out over the last 30 years in the field of preparation, modification and structure and property control of membranes made from ultrahigh molecular weight polyethylene. The review also presents a classification of the methods of membrane formation from this polymer and analyzes the conventional (based on the analysis of incomplete phase diagrams) and alternative (based on the analysis of phase diagrams supplemented by a boundary line reflecting the polymer swelling degree dependence on temperature) physicochemical concepts of the thermally induced phase separation (TIPS) method used to prepare UHMWPE membranes. It also considers the main ways to control the structure and properties of UHMWPE membranes obtained by TIPS and the original variations of this method. This review discusses the current challenges in UHMWPE membrane formation, such as the preparation of a homogeneous solution and membrane shrinkage. Finally, the article speculates about the modification and application of UHMWPE membranes and further development prospects. Thus, this paper summarizes the achievements in all aspects of UHMWPE membrane studies.
Collapse
|
3
|
Pochivalov KV, Basko AV. Formation of porous microspheres from semicrystalline polymer solutions: diffusion-controlled and local phase separation. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2056051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Pochivalov KV, Basko AV, Lebedeva TN, Ilyasova AN, Guseinov SS, Kudryavtsev YV. Thermodynamically-informed approach to the synthesis of 3D printing powders from the mixtures of polyamide 12 with benzyl alcohol. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|