1
|
Takahashi CN, Ward DP, Cazzaniga C, Frost C, Rech P, Ganguly K, Blanchard S, Wender S, Nguyen BH, Smith JA. Evaluating the risk of data loss due to particle radiation damage in a DNA data storage system. Nat Commun 2024; 15:8067. [PMID: 39277598 PMCID: PMC11401870 DOI: 10.1038/s41467-024-51768-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/16/2024] [Indexed: 09/17/2024] Open
Abstract
DNA data storage is a potential alternative to magnetic tape for archival storage purposes, promising substantial gains in information density. Critical to the success of DNA as a storage media is an understanding of the role of environmental factors on the longevity of the stored information. In this paper, we evaluate the effect of exposure to ionizing particle radiation, a cause of data loss in traditional magnetic media, on the longevity of data in DNA data storage pools. We develop a mass action kinetics model to estimate the rate of damage accumulation in DNA strands due to neutron interactions with both nucleotides and residual water molecules, then utilize the model to evaluate the effect several design parameters of a typical DNA data storage scheme have on expected data longevity. Finally, we experimentally validate our model by exposing dried DNA samples to different levels of neutron irradiation and analyzing the resulting error profile. Our results show that particle radiation is not a significant contributor to data loss in DNA data storage pools under typical storage conditions.
Collapse
Affiliation(s)
- Christopher N Takahashi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - David P Ward
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | - Steve Wender
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Bichlien H Nguyen
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Microsoft Research, Redmond, WA, USA.
| | - Jake A Smith
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Microsoft Research, Redmond, WA, USA.
| |
Collapse
|
2
|
Wang Q, Zhang S, Li Y. Efficient DNA Coding Algorithm for Polymerase Chain Reaction Amplification Information Retrieval. Int J Mol Sci 2024; 25:6449. [PMID: 38928155 PMCID: PMC11204281 DOI: 10.3390/ijms25126449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Polymerase Chain Reaction (PCR) amplification is widely used for retrieving information from DNA storage. During the PCR amplification process, nonspecific pairing between the 3' end of the primer and the DNA sequence can cause cross-talk in the amplification reaction, leading to the generation of interfering sequences and reduced amplification accuracy. To address this issue, we propose an efficient coding algorithm for PCR amplification information retrieval (ECA-PCRAIR). This algorithm employs variable-length scanning and pruning optimization to construct a codebook that maximizes storage density while satisfying traditional biological constraints. Subsequently, a codeword search tree is constructed based on the primer library to optimize the codebook, and a variable-length interleaver is used for constraint detection and correction, thereby minimizing the likelihood of nonspecific pairing. Experimental results demonstrate that ECA-PCRAIR can reduce the probability of nonspecific pairing between the 3' end of the primer and the DNA sequence to 2-25%, enhancing the robustness of the DNA sequences. Additionally, ECA-PCRAIR achieves a storage density of 2.14-3.67 bits per nucleotide (bits/nt), significantly improving storage capacity.
Collapse
Affiliation(s)
| | - Shufang Zhang
- School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China
| | | |
Collapse
|
3
|
Yu M, Tang X, Li Z, Wang W, Wang S, Li M, Yu Q, Xie S, Zuo X, Chen C. High-throughput DNA synthesis for data storage. Chem Soc Rev 2024; 53:4463-4489. [PMID: 38498347 DOI: 10.1039/d3cs00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaohui Tang
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Zhenhua Li
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Weidong Wang
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Qiuliyang Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Sijia Xie
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Chang Chen
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| |
Collapse
|
4
|
Wang S, Mao X, Wang F, Zuo X, Fan C. Data Storage Using DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307499. [PMID: 37800877 DOI: 10.1002/adma.202307499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The exponential growth of global data has outpaced the storage capacities of current technologies, necessitating innovative storage strategies. DNA, as a natural medium for preserving genetic information, has emerged as a highly promising candidate for next-generation storage medium. Storing data in DNA offers several advantages, including ultrahigh physical density and exceptional durability. Facilitated by significant advancements in various technologies, such as DNA synthesis, DNA sequencing, and DNA nanotechnology, remarkable progress has been made in the field of DNA data storage over the past decade. However, several challenges still need to be addressed to realize practical applications of DNA data storage. In this review, the processes and strategies of in vitro DNA data storage are first introduced, highlighting recent advancements. Next, a brief overview of in vivo DNA data storage is provided, with a focus on the various writing strategies developed to date. At last, the challenges encountered in each step of DNA data storage are summarized and promising techniques are discussed that hold great promise in overcoming these obstacles.
Collapse
Affiliation(s)
- Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Mu Z, Cao B, Wang P, Wang B, Zhang Q. RBS: A Rotational Coding Based on Blocking Strategy for DNA Storage. IEEE Trans Nanobioscience 2023; 22:912-922. [PMID: 37028365 DOI: 10.1109/tnb.2023.3254514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The data volume of global information has grown exponentially in recent years, but the development of silicon-based memory has entered a bottleneck period. Deoxyribonucleic acid (DNA) storage is drawing attention owing to its advantages of high storage density, long storage time, and easy maintenance. However, the base utilization and information density of existing DNA storage methods are insufficient. Therefore, this study proposes a rotational coding based on blocking strategy (RBS) for encoding digital information such as text and images in DNA data storage. This strategy satisfies multiple constraints and produces low error rates in synthesis and sequencing. To illustrate the superiority of the proposed strategy, it was compared and analyzed with existing strategies in terms of entropy value change, free energy size, and Hamming distance. The experimental results show that the proposed strategy has higher information storage density and better coding quality in DNA storage, so it will improve the efficiency, practicality, and stability of DNA storage.
Collapse
|
6
|
Buko T, Tuczko N, Ishikawa T. DNA Data Storage. BIOTECH 2023; 12:44. [PMID: 37366792 DOI: 10.3390/biotech12020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The demand for data storage is growing at an unprecedented rate, and current methods are not sufficient to accommodate such rapid growth due to their cost, space requirements, and energy consumption. Therefore, there is a need for a new, long-lasting data storage medium with high capacity, high data density, and high durability against extreme conditions. DNA is one of the most promising next-generation data carriers, with a storage density of 10¹⁹ bits of data per cubic centimeter, and its three-dimensional structure makes it about eight orders of magnitude denser than other storage media. DNA amplification during PCR or replication during cell proliferation enables the quick and inexpensive copying of vast amounts of data. In addition, DNA can possibly endure millions of years if stored in optimal conditions and dehydrated, making it useful for data storage. Numerous space experiments on microorganisms have also proven their extraordinary durability in extreme conditions, which suggests that DNA could be a durable storage medium for data. Despite some remaining challenges, such as the need to refine methods for the fast and error-free synthesis of oligonucleotides, DNA is a promising candidate for future data storage.
Collapse
Affiliation(s)
- Tomasz Buko
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| | - Nella Tuczko
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| |
Collapse
|
7
|
Fei Z, Gupta N, Li M, Xiao P, Hu X. Toward highly effective loading of DNA in hydrogels for high-density and long-term information storage. SCIENCE ADVANCES 2023; 9:eadg9933. [PMID: 37163589 PMCID: PMC10171811 DOI: 10.1126/sciadv.adg9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Digital information, when converted into a DNA sequence, provides dense, stable, energy-efficient, and sustainable data storage. The most stable method for encapsulating DNA has been in an inorganic matrix of silica, iron oxide, or both, but are limited by low DNA uptake and complex recovery techniques. This study investigated a rationally designed thermally responsive functionally graded (TRFG) hydrogel as a simple and cost-effective method for storing DNA. The TRFG hydrogel shows high DNA uptake, long-term protection, and reusability due to nondestructive DNA extraction. The high loading capacity was achieved by directly absorbing DNA from the solution, which is then retained because of its interaction with a hyperbranched cationic polymer loaded into a negatively charged hydrogel matrix used as a support and because of its thermoresponsive nature, which allows DNA concentration within the hydrogel through multiple swelling/deswelling cycles. We were able to achieve a high DNA data density of 7.0 × 109 gigabytes per gram using a hydrogel-based system.
Collapse
Affiliation(s)
- Zhongjie Fei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nupur Gupta
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Mengjie Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiao Hu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
8
|
Salnitska M, Solodovnikov A, Orlov I. Sampling and curation of rove beetles (Insecta, Coleoptera, Staphylinidae) for comprehensive and DNA-grade collections to enhance biodiversity exploration in Northern Eurasia. Biodivers Data J 2022; 10:e96080. [PMID: 36761535 PMCID: PMC9836449 DOI: 10.3897/bdj.10.e96080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Staphylinidae beetles form a major portion of terrestrial biodiversity globally and, in particular, in Northern Eurasia, a large area with a historically better known north temperate, subarctic and arctic biota. However, even here, rove beetles remain amongst the so-called "dark taxa" with a high fraction of taxonomically unknown lineage diversity. The propagation of DNA-based technologies in systematic entomology in recent decades has brought new opportunities for biodiversity exploration, true also for Staphylinidae. Simultaneously, new methods have revealed limitations of specimens sampled and curated by traditional practices, as existing legacy collections, whether institutional or private, unfortunately do not always qualify as a source of DNA-grade material. In addition, both legacy and newly-collected DNA-grade material of Staphylinidae remain highly biased towards Central Europe, a region with a traditionally well-developed scientific infrastructure and long-established culture for the maintenance of entomological collections. To increase the degree of biodiversity knowledge for our target organismal group across the globe, efficient sampling of DNA-grade material and, in particular, the development of comprehensive local collections in under-studied regions is highly desirable. To facilitate that, here we provide a practical guide for collecting and curation of Staphylinidae with a focus on capacity building for DNA-grade collections in Siberia and elsewhere in Northern Eurasia.
Collapse
Affiliation(s)
- Maria Salnitska
- The Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, RussiaThe Institute of Environmental and Agricultural Biology (X-BIO), University of TyumenTyumenRussia
| | - Alexey Solodovnikov
- The Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, RussiaThe Institute of Environmental and Agricultural Biology (X-BIO), University of TyumenTyumenRussia,Natural History Museum of Denmark, Copenhagen, DenmarkNatural History Museum of DenmarkCopenhagenDenmark
| | - Igor Orlov
- The Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, RussiaThe Institute of Environmental and Agricultural Biology (X-BIO), University of TyumenTyumenRussia
| |
Collapse
|
9
|
Bionic‐structure thermo‐responsive (best) hydrogels with controllable layer for high‐capacity DNA data storage. NANO SELECT 2022. [DOI: 10.1002/nano.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Bennet D, Vo‐Dinh T, Zenhausern F. Current and emerging opportunities in biological medium‐based computing and digital data storage. NANO SELECT 2021. [DOI: 10.1002/nano.202100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
| | - Tuan Vo‐Dinh
- Department of Biomedical Engineering Department of Chemistry Fitzpatrick Institute for Photonics Duke University Durham North Carolina USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
- Department of Basic Medical Sciences College of Medicine Phoenix The University of Arizona Phoenix Arizona USA
- Department of Biomedical Engineering; and BIO5 Institute College of Engineering The University of Arizona Tucson Arizona USA
- School of Pharmaceutical Sciences University of Geneva Geneva Switzerland
| |
Collapse
|
11
|
Mostovaya O, Padnya P, Shiabiev I, Mukhametzyanov T, Stoikov I. PAMAM-calix-dendrimers: Synthesis and Thiacalixarene Conformation Effect on DNA Binding. Int J Mol Sci 2021; 22:ijms222111901. [PMID: 34769329 PMCID: PMC8585033 DOI: 10.3390/ijms222111901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/16/2022] Open
Abstract
A convenient method for the synthesis of the first generation PAMAM dendrimers based on the thiacalix[4]arene has been developed for the first time. Three new PAMAM-calix-dendrimers with the macrocyclic core in cone, partial cone, and 1,3-alternate conformations were obtained with high yields. The interaction of the obtained compounds with salmon sperm DNA resulted in the formation of the associates of the size up to 200 nm, as shown by the UV-Vis spectroscopy, DLS, and TEM. It was demonstrated by the CD method that the structure of the DNA did not undergo significant changes upon binding. The PAMAM-calix-dendrimer based on the macrocycle in cone conformation stabilized DNA and prevented its degradation.
Collapse
Affiliation(s)
| | - Pavel Padnya
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | | | | | - Ivan Stoikov
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|