1
|
Dubskikh VA, Lysova AA, Kovalenko KA, Samsonenko DG, Dybtsev DN, Fedin VP. Metal-organic frameworks with a sulfur-rich heterocycle: synthesis, gas adsorption properties, and metal exchange. Dalton Trans 2024; 53:16654-16660. [PMID: 39329373 DOI: 10.1039/d4dt02209b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Three new three-dimensional (3D) metal-organic frameworks [M2(ttdc)2(dabco)] (M = Zn(II), 1-Zn; Cu(II), 1-Cu; and Zn/Cu, 1-ZnCu) based on thieno[3,2-b]thiophene-2,5-dicarboxylate (ttdc2-) were synthesized and characterized by a combination of physicochemical methods (single crystal X-ray diffraction, powder X-ray diffraction, chemical and thermogravimetric analyses and IR spectroscopy). 1-Cu demonstrated permanent porosity (Vpore = 0.790 cm3 g-1 and SBET = 1725 m2 g-1) and significant CO2, CH4, C2H2, C2H4 and C2H6 gas uptakes under ambient conditions. The adsorption selectivities for gas mixtures, calculated by IAST, were 10.8 (10.7), 14.6 (9.4), 1.7 (1.6) and 1.5 (1.6) for the equimolar gas mixture compositions CO2/N2, C2H6/CH4, C2H6/C2H4 and C2H6/C2H2 at 1 bar and 273 K (298 K), respectively. The mixed-metal compound 1-ZnCu was prepared by a crystal-to-crystal ion exchange metathesis reaction from 1-Zn with a 52% degree of ion substitution, confirmed by energy-dispersive X-ray spectroscopy, optical microscopy and single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Vadim A Dubskikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia.
| | - Anna A Lysova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia.
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia.
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia.
| | - Danil N Dybtsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia.
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia.
| |
Collapse
|
2
|
Burlak PV, Samsonenko DG, Kovalenko KA, Fedin VP. Series of Cadmium-Organic Frameworks Based on Mixed Flexible and Rigid Ligands: Single-Crystal-to-Single-Crystal Transformations, Sorption, and Luminescence Properties. Inorg Chem 2023; 62:18087-18097. [PMID: 37861690 DOI: 10.1021/acs.inorgchem.3c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Here, we present a series of Cd(II) coordination polymers containing two types of ligands: sterically rigid terephthalate derivatives (bdc-NO22- and bdc-Br2-) and flexible bis(2-methylimidazolyl)propane (bmip). The combination of two types of ligands is used to obtain and characterize compounds by single crystal and powder X-ray diffraction, FT-IR, elemental analysis, and TGA. Guest exchange results in structural transformations. 2-fold interpenetrated 1·DMF and 2·DMF rapidly undergo to 4-fold interpenetrated 1·Et2O, 1·EtOH, and 1·H2O, or 2·Et2O, respectively. Also, changes in the coordinating numbers and length of the N,N'-donor bmip ligand were observed according to single crystal X-ray analysis. Activated guest-free compounds [Cd(bdc-NO2)(bmip)] (1) and [Cd(bdc-Br)(bmip)] (2) are shown to be porous with a BET surface area of 103 and 283 m2·g-1, respectively. Moreover, both compounds demonstrate gate-opening behavior of ethylene adsorption isotherms at low pressures (<1 bar) and highly selective adsorption of benzene over cyclohexane or lower alcohols. Also, both compounds demonstrate a strong dependence of the maximum of the photoluminescence emission on an excitation wavelength. As a result, the photoluminescence color changes from white to red and from blue to red through green and yellow for compounds 1 and 2, respectively, with excitation wavelength changing from 360 to 540 nm.
Collapse
Affiliation(s)
- Pavel V Burlak
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090 Novosibirsk, Russian Federation
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090 Novosibirsk, Russian Federation
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090 Novosibirsk, Russian Federation
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090 Novosibirsk, Russian Federation
| |
Collapse
|
3
|
Abasheeva KD, Demakov PA, Polyakova EV, Lavrov AN, Fedin VP, Dybtsev DN. Synthesis, Structural Versatility, Magnetic Properties, and I - Adsorption in a Series of Cobalt(II) Metal-Organic Frameworks with a Charge-Neutral Aliphatic (O,O)-Donor Bridge. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2773. [PMID: 37887924 PMCID: PMC10609582 DOI: 10.3390/nano13202773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Four new metal-organic frameworks based on cobalt(II) salts and 1,4-diazabicyclo[2.2.2]octane N,N'-dioxide (odabco) were obtained. Their crystallographic formulae are [Co3(odabco)2(OAc)6] (1, OAc- = acetate), [Co(H2O)2(HCOO)2]·odabco (2), [Co2(H2O)(NO3)(odabco)5](NO3)3·3.65H2O (3), and [Co2(DMF)2(odabco)4](NO3)4·3H2O (4; DMF = N,N-dimethylformamide). Crystal structures of 1-4 were determined by single-crystal X-ray crystallography. Coordination polymer 1 comprises binuclear and mononuclear metal-acetate blocks alternating within uncharged one-dimensional chains, in which odabco acts as a bridging ligand. A layered Co(II) formate 2 contains odabco only as guest molecules located in the interlayer space. Layered compound 3 and three-dimensional 4 have cationic coordination frameworks with 26% and 34% specific void volumes, respectively, unveiling high structural diversity of Co(II)-odabco MOFs based on quite a rare aliphatic moiety. Magnetization measurements were performed for 1, 3, and 4 and the obtained data were interpreted on the basis of their crystal structures. A strong (J/kB~100 K) antiferromagnetic coupling was found within binuclear metal blocks in 1. Ion exchange experiments revealed a considerable iodide uptake by 3 resulting in an up to 75% guest nitrate substitution within the voids of a coordination framework, found by capillary zone electrophoresis data and confirmed by single-crystal XRD. A preservation of 3 crystallinity during the exchange allowed for the guest I- positions within a new adduct with the formula [Co2(H2O)(NO3)(odabco)5]I2(NO3)·1.85H2O (3-I) to be successfully determined and the odabco aliphatic core to be revealed as a main adsorption center for quite large and easily polarizable iodide anions. In summary, this work presents a comprehensive study for a series of 1,4-diazabicyclo[2.2.2]octane N,N'-dioxide-based MOFs of cobalt(II) within the framework of magnetic properties and reports the first example of anion exchange in odabco-based coordination networks, supported by direct X-ray structural data. The reported results unveil promising applications of such frameworks bearing ligands with an aliphatic core in the diverse structural design of selective adsorbents and other types of functional materials.
Collapse
Affiliation(s)
- Ksenia D. Abasheeva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (K.D.A.); (E.V.P.); (A.N.L.); (V.P.F.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Pavel A. Demakov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (K.D.A.); (E.V.P.); (A.N.L.); (V.P.F.)
| | - Evgeniya V. Polyakova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (K.D.A.); (E.V.P.); (A.N.L.); (V.P.F.)
| | - Alexander N. Lavrov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (K.D.A.); (E.V.P.); (A.N.L.); (V.P.F.)
| | - Vladimir P. Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (K.D.A.); (E.V.P.); (A.N.L.); (V.P.F.)
| | - Danil N. Dybtsev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (K.D.A.); (E.V.P.); (A.N.L.); (V.P.F.)
| |
Collapse
|
4
|
Kulachenkov NK, Orlioglo B, Vasilyev ES, Povarov SA, Agafontsev AM, Bachinin S, Shipilovskikh S, Lunev A, Samsonenko DG, Fedin VP, Kovalenko KA, Milichko VA. Metal-mediated tunability of MOF-based optical modulators. Chem Commun (Camb) 2023; 59:9964-9967. [PMID: 37501597 DOI: 10.1039/d3cc02180g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We report on the design of 1D MOFs based on a nopinane-annelated organic ligand and Co(II) or Ni(II), the variation of which allows tuning the optical modulation bandwidth. Structural and time-resolved analysis revealed the optical modulation mechanism, the rates and its endurance, thereby enriching the list of sustainable MOFs for tunable optical modulators.
Collapse
Affiliation(s)
- Nikita K Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Bogdan Orlioglo
- Chemical Science Program, KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Eugene S Vasilyev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Svyatoslav A Povarov
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Alexander M Agafontsev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
- Universit de Lorraine, UMR CNRS 7198, Nancy 54011, France.
| |
Collapse
|
5
|
Demakov PA. Properties of Aliphatic Ligand-Based Metal-Organic Frameworks. Polymers (Basel) 2023; 15:2891. [PMID: 37447535 DOI: 10.3390/polym15132891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ligands with a purely aliphatic backbone are receiving rising attention in the chemistry of coordination polymers and metal-organic frameworks. Such unique features inherent to the aliphatic bridges as increased conformational freedom, non-polarizable core, and low light absorption provide rare and valuable properties for their derived MOFs. Applications of such compounds in stimuli-responsive materials, gas, and vapor adsorbents with high and unusual selectivity, light-emitting, and optical materials have extensively emerged in recent years. These properties, as well as other specific features of aliphatic-based metal-organic frameworks are summarized and analyzed in this short critical review. Advanced characterization techniques, which have been applied in the reported works to obtain important data on the crystal and molecular structures, dynamics, and functionalities, are also reviewed within a general discussion. In total, 132 references are included.
Collapse
Affiliation(s)
- Pavel A Demakov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Akad. Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Yu XL, Pavlov DI, Ryadun AA, Potapov AS, Fedin VP. SYNTHESIS, CRYSTAL STRUCTURE, AND LUMINESCENCE OF THE ONE-DIMENSIONAL LANTHANUM(III) COORDINATION POLYMER WITH 2,6-BIS (3,5-DICARBOXYPHENOXY)PYRIDINE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Hua J, Wang M, Zhang D, Pei X, Zhao X, Ma X. A THREE-DIMENSIONAL CADMIUM MIXED LIGANDS COORDINATION POLYMER WITH CO2 ADSORPTION ABILITY. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Zherebtsov DA, Sharutin VV, Polozov MA, Naifert SA, Radzhakumar K, Adonin SA, Osipov AA, Lutsenko AI. 2,4,6-TRIIODIDE-3-AMINOBENZOATE NICKEL COMPLEXES: SYNTHESIS, STRUCTURE AND NONCOVALENT INTERACTIONS IN THE SOLID STATE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Tang Y, Yao X. SYNTHESIS OF A NEW LAYERED Zn(II) COORDINATION POLYMER VIA DUAL-LIGAND STRATEGY: LUMINESCENCE SENSING FOR DETECTION OF Fe3+ ION. J STRUCT CHEM+ 2022. [DOI: 10.1134/s002247662211004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Tang Y, Yao XQ. SYNTHESIS, CRYSTAL STRUCTURE, AND LUMINESCENT PROPERTY OF A NEW HETEROMETALLIC COMPOUND BASED ON A LARGE π-CONJUGATED DICARBOXYLATE LIGAND. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Structural Diversity and Carbon Dioxide Sorption Selectivity of Zinc(II) Metal-Organic Frameworks Based on Bis(1,2,4-triazol-1-yl)methane and Terephthalic Acid. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196481. [PMID: 36235016 PMCID: PMC9571910 DOI: 10.3390/molecules27196481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
A three-component reaction between the 1,4-benzenedicarboxylic (terephthalic) acid (H2bdc), bis(1,2,4-triazol-1-yl)methane (btrm) and zinc nitrate was studied, and three new coordination polymers were isolated by a careful selection of the reaction conditions. Coordination polymers {[Zn3(DMF)(btrm)(bdc)3]·nDMF}∞ and {[Zn3(btrm)(bdc)3]·nDMF}∞ containing trinuclear {Zn3(bdc)3} secondary building units are joined by btrm auxiliary linkers into three-dimensional metal–organic frameworks. The coordination polymer {[Zn(bdc)(btrm)]∙nDMF}∞ consists of Zn2+ cations joined by bdc2− and btrm linkers into a two-fold interpenetrated network. Upon activation, MOF [Zn3(btrm)(bdc)3]∞ demonstrated CO2/N2 adsorption selectivity with an ideal adsorbed solution theory (IAST) factor of 21. All three MOF demonstrated photoluminescence with a maximum near 435–440 nm upon excitation at 330 nm.
Collapse
|
12
|
Aliphatic-Bridged Early Lanthanide Metal–Organic Frameworks: Topological Polymorphism and Excitation-Dependent Luminescence. INORGANICS 2022. [DOI: 10.3390/inorganics10100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Six new three-dimensional metal–organic frameworks based on early lanthanide(III) cations and trans-1,4-cyclohexanedicarboxylic acid (H2chdc) were obtained. Their crystal structures were determined by single-crystal X-ray diffraction analysis. The structure of [La2(H2O)4(chdc)3]·2DMF·H2O (1; DMF = N,N-dimethylformamide) contains one-dimensional infinite La(III)-carboxylate chains interconnected by cyclohexane moieties to form a highly porous polymeric lattice with 30% solvent accessible volume. Compounds [Ln2(phen)2(chdc)3]·0.75DMF (2Ln; Ln3+ = Ce3+, Pr3+, Nd3+ and Sm3+; phen = 1,10-phenanthroline) are based on binuclear carboxylate building blocks, which are decorated by chelate phenanthroline ligands and interconnected by cyclohexane moieties to form more dense isostructural coordination frameworks with primitive cubic pcu topology. Compound [Nd2(phen)2(chdc)3]·2DMF·0.67H2O (3) is based on secondary building units similar to 2Ln and contains a coordination lattice isomeric to 2Ln with a rare hexagonal helical snz topology. Thermal stability and luminescent properties were investigated. For 2Sm, a strong and nonmonotonous dependence of the luminescence color on the variation of excitation wavelength was revealed, changing its emission from pinkish red at λex = 340 nm to white at λex = 400 nm, and then to yellow at lower excitation energies. Such nonlinear behavior was rationalized in terms of the contribution of several different luminescence mechanisms. Thus, 2Sm is a rather rare example of a highly tunable monometallic lanthanide-based luminophore with possible applications in light-emitting devices and optical data processing.
Collapse
|
13
|
New Insight into Sorption Cycling Stability of Three Al-Based MOF Materials in Water Vapour. NANOMATERIALS 2022; 12:nano12122092. [PMID: 35745436 PMCID: PMC9231181 DOI: 10.3390/nano12122092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Three porous aluminium benzene-1,3,5-tricarboxylates MIL-96(Al), MIL-100(Al) and MIL-110(Al) materials were studied for their hydrothermal stability. The 40-cycles water vapour sorption experiments for the three samples were performed by varying the temperature between 40 and 140 °C at 75% relative humidity to simulate working conditions for materials used in water sorption-based low-T heat storage and reallocation applications. The materials were characterized by powder X-ray diffraction, N2 physisorption, and Nuclear Magnetic Resonance and Infrared spectroscopies before and after the cycling tests. The results showed that the structure of MIL-110(Al) lost its crystallinity and porosity under the tested conditions, while MIL-96(Al) and MIL-100(Al) exhibited excellent hydrothermal stability. The selection of structures, which comprise the same type of metal and ligand, enabled us to attribute the differences in stability primarily to the known variances in secondary building units and the shielding of potential water coordination sites due to the differences in pore accessibility for water molecules. Additionally, our results revealed that water adsorption and desorption at tested conditions (T, RH) is very slow for all three materials, being most pronounced for the MIL-100(Al) structure.
Collapse
|
14
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Gorbunova YG, Enakieva YY, Volostnykh MV, Sinelshchikova AA, Abdulaeva IA, Birin KP, Tsivadze AY. Porous porphyrin-based metal-organic frameworks: synthesis, structure, sorption properties and application prospects. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Pavlov DI, Ryadun AA, Potapov AS. A Zn(II)-Based Sql Type 2D Coordination Polymer as a Highly Sensitive and Selective Turn-On Fluorescent Probe for Al 3. Molecules 2021; 26:7392. [PMID: 34885974 PMCID: PMC8658932 DOI: 10.3390/molecules26237392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
A luminescent coordination polymer with the overall formula {[Zn(tr2btd)(bpdc)]∙DMF}n (where tr2btd = 4,7-di(1H-1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole; bpdc = 4,4'-biphenyldicarboxylate) was synthesized and characterized by single-crystal and powder X-ray diffraction, thermogravimetric, infrared spectroscopy, and elemental analyses. Luminescent properties of the obtained compound were studied in detail both in the solid state and as a suspension in N,N-dimethylacetamide (DMA). It was found that {[Zn(tr2btd)(bpdc)]∙DMF}n exhibits bright turquoise luminescence with excellent quantum efficiency and demonstrates turn-on fluorescence enhancement effect upon soaking in DMA Al3+ solution. Fluorescence titration experiments were carried out and the detection limit for Al3+ ions was calculated to be 120 nM, which is among the lowest reported values for similar materials. Moreover, compound demonstrated excellent selectivity and reusability, and the mechanism of the response is discussed. These results indicate that {[Zn(tr2btd)(bpdc)]∙DMF}n is a promising probe for sensitive fluorescent Al3+ detection.
Collapse
Affiliation(s)
| | | | - Andrei S. Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (D.I.P.); (A.A.R.)
| |
Collapse
|
17
|
Nanostructure and Luminescent Properties of Bimetallic Lanthanide Eu/Gd, Tb/Gd and Eu/Tb Coordination Polymers. INORGANICS 2021. [DOI: 10.3390/inorganics9100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study presents the synthesis, structural and luminescence properties for lanthanide metal–organic frameworks (LnMOFs), which belong to the sub-class of coordination polymers. The series of nanosized LnMOFs (Ln = Eu, Gd, Tb, Eu0.5Gd0.5, Tb0.5Gd0.5 and Eu0.5Tb0.5) was prepared by solvothermal synthesis using a modulator (sodium acetate). We investigated the various surface chemistry compositions of the isostructural LnMOFs with a [Ln(btc)] structure (BTC: Benzene-1,3,5-tricarboxylate) by X-ray photoelectron spectroscopy (XPS). The XPS confirmed the mixed-valent Eu3+ and Eu2+ compounds, and the presence of Tb in both +3 and +4 valence states, and one +3 valency of Gd. A nanostructure of mixed LnMOFs (EuGd, TbGd and EuTb) with a rod-like shape is related to luminescence properties. The MOFs (EuTb and EuGd) presented Comission Internationale de l’Éclairage (CIE) chromaticities of x = 0.666 and y = 0.331, and x = 0.654 and y = 0.348, respectively, in the red region. They were better than the values desired for use in commercial phosphors, which are x = 0.64 and y = 0.35. For [Tb/Gd(btc)], the CIE coordinates were x = 0.334 and y = 0.562, presenting emissions in the green region. Bimetallic LnMOFs are very promising UV light sensors for biological applications.
Collapse
|
18
|
Liu X, Lu L, Zhu M, Englert U. Design and synthesis of three new copper coordination polymers: efficient degradation of an organic dye at alkaline pH. Dalton Trans 2021; 50:13866-13876. [PMID: 34523645 DOI: 10.1039/d1dt02463a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new coordination polymers (CPs) based on Cu(II), namely {[Cu6(H2L)4(4,4'-bpy)6(H2O)2]·16H2O}n(1), {[Cu(H3L)(1,4-bib)]·3H2O}n(2), and {[Cu2(H2L)2(1,4-bib)2][Cu(1,4-bib)(H2O)2]}n·4nH2O(3) (H5L = 6-(3',4'-dicarboxyphenoxy)-2,3,5-benzene tricarboxylic acid, 4,4'-bpy = 4,4'-bipyridine and 1,4-bib = 1,4-bis(1H-imidazol-1-yl)benzene) were synthesized under hydrothermal conditions and characterized. 1 adopts a three-dimensional structure and can be described with the point symbol {4·52}2{42·54·64·83·92}{5·104·12} whereas 2 shows a layered structure. 3 can be perceived as a complex salt of two coordination polymers: the cationic component [Cu(1,4-bib)(H2O)2]n2+ (3a) represents a chain polymer and the second anionic moiety [Cu2(H2L)2(1,4-bib)2]n2- (3b) corresponds to a 2D sub-structure. In the presence of H2O2, all complexes 1-3 act as efficient photocatalysts for the degradation of the dye methylene blue (MB). The effects of properties such as initial MB concentration, catalyst dosage, pH value, and H2O2 concentration on MB degradation were also investigated and analyzed in detail. Compounds 1-3 exhibit excellent structural stability during the catalytic process and can be reused at least three times. The hydroxyl radical (OH˙) and holes (h+) were confirmed as the main active species in the degradation process.
Collapse
Affiliation(s)
- Xiaxia Liu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. .,Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | - Miaoli Zhu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. .,Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ulli Englert
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. .,Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg. 1, Aachen 52074, Germany.
| |
Collapse
|
19
|
Marchenko RD, Sukhikh TS, Ryadun AA, Potapov AS. Synthesis, Crystal Structure, and Luminescence of Cadmium(II) and Silver(I) Coordination Polymers Based on 1,3-Bis(1,2,4-triazol-1-yl)adamantane. Molecules 2021; 26:molecules26175400. [PMID: 34500832 PMCID: PMC8434004 DOI: 10.3390/molecules26175400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/30/2023] Open
Abstract
Coordination polymers with a new rigid ligand 1,3-bis(1,2,4-triazol-1-yl)adamantane (L) were prepared by its reaction with cadmium(II) or silver(I) nitrates. Crystal structure of the coordination polymers was determined using single-crystal X-ray diffraction analysis. Silver formed two-dimensional coordination polymer [Ag(L)NO3]n, in which metal ions are linked by 1,3-bis(1,2,4-triazol-1-yl)adamantane ligands, coordinated by nitrogen atoms at positions 2 and 4 of 1,2,4-triazole rings. Layers of the coordination polymer consist of rare 18- and 30-membered {Ag2L2} and {Ag4L4} metallocycles. Cadmium(II) nitrate formed two kinds of one-dimensional coordination polymers depending on the metal-to-ligand ratio used in the synthesis. Coordination polymer [Cd(L)2(NO3)2]n was obtained in case of a 1:2 M:L ratio, while for M:L = 2:1 product {[Cd(L)(NO3)2(CH3OH)]·0.5CH3OH}n was isolated. All coordination polymers demonstrated ligand-centered emission near 450 nm upon excitation at 370 nm.
Collapse
Affiliation(s)
- Roman D. Marchenko
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia;
| | - Taisiya S. Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.S.S.); (A.A.R.)
| | - Alexey A. Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.S.S.); (A.A.R.)
| | - Andrei S. Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.S.S.); (A.A.R.)
- Correspondence: ; Tel.: +7-(383)-330-94-90
| |
Collapse
|