1
|
Bond DM, Veale A, Alexander A, Hore TA. Coat colour in marsupials: genetic variants at the ASIP locus determine grey and black fur of the brushtail possum. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240806. [PMID: 39086822 PMCID: PMC11288674 DOI: 10.1098/rsos.240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
The possession of fur or hair is a defining characteristic of mammals and can occur in a variety of colours and patterns. While genetic determinants of coat colour are well described in eutherian 'placental' mammals, the other major mammalian infraclass, marsupials, is grossly understudied. The fur of the common brushtail possum (Trichosurus vulpecula), an iconic native mammal found throughout Australia and introduced into Aotearoa New Zealand, possesses two main colour morphs: grey and black. To identify genetic variants associated with coat colour, we performed a genome-wide association study (GWAS) with genotype by sequencing (GBS) data. Single nucleotide variants (SNVs) on chromosome 3, close to the agouti signalling protein (ASIP) gene that controls the temporal and spatial distribution of pigments in eutherian mammals, were identified. Fine-mapping identified a C>T variant at chr3:100483705 that results in a ASIP:p.Arg115Cys missense substitution, and animals homozygous for this variant have black fur. In addition to uncovering the first genetic determinant of coat colour in a natural marsupial population, comparative analysis of ASIP in divergent marsupial species identified the dasyurids as having accelerated evolution, reflecting their well described diversity of coat colour and pattern.
Collapse
Affiliation(s)
- Donna M. Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Andrew Veale
- Manaaki Whenua—Landcare Research, Lincoln, New Zealand
| | - Alana Alexander
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Harrison ND, Steven R, Phillips BL, Hemmi JM, Wayne AF, Mitchell NJ. Identifying the most effective behavioural assays and predator cues for quantifying anti-predator responses in mammals: a systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:5. [PMID: 39294799 PMCID: PMC11378833 DOI: 10.1186/s13750-023-00299-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/12/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Mammals, globally, are facing population declines. Protecting and breeding threatened populations inside predator-free havens and translocating them back to the wild is commonly viewed as a solution. These approaches can expose predator-naïve animals to predators they have never encountered and as a result, many conservation projects have failed due to the predation of individuals that lacked appropriate anti-predator responses. Hence, robust ways to measure anti-predator responses are urgently needed to help identify naïve populations at risk, to select appropriate animals for translocation, and to monitor managed populations for changes in anti-predator traits. Here, we undertake a systematic review that collates existing behavioural assays of anti-predator responses and identifies assay types and predator cues that provoke the greatest behavioural responses. METHODS We retrieved articles from academic bibliographic databases and grey literature sources (such as government and conservation management reports), using a Boolean search string. Each article was screened against eligibility criteria determined using the PICO (Population-Intervention-Comparator-Outcome) framework. Using data extracted from each article, we mapped all known behavioural assays for quantifying anti-predator responses in mammals and examined the context in which each assay has been implemented (e.g., species tested, predator cue characteristics). Finally, with mixed effects modelling, we determined which of these assays and predator cue types elicit the greatest behavioural responses based on standardised difference in response between treatment and control groups. REVIEW FINDINGS We reviewed 5168 articles, 211 of which were eligible, constituting 1016 studies on 126 mammal species, a quarter of which are threatened by invasive species. We identified six major types of behavioural assays: behavioural focals, capture probability, feeding station, flight initiation distance, giving-up density, and stimulus presentations. Across studies, there were five primary behaviours measured: activity, escape, exploration, foraging, and vigilance. These behaviours yielded similar effect sizes across studies. With regard to study design, however, studies that used natural olfactory cues tended to report larger effect sizes than those that used artificial cues. Effect sizes were larger in studies that analysed sexes individually, rather than combining males and females. Studies that used 'blank' control treatments (the absence of a stimulus) rather than a treatment with a control stimulus had higher effect sizes. Although many studies involved repeat measures of known individuals, only 15.4% of these used their data to calculate measures of individual repeatability. CONCLUSIONS Our review highlights important aspects of experimental design and reporting that should be considered. Where possible, studies of anti-predator behaviour should use appropriate control treatments, analyse males and females separately, and choose organic predator cues. Studies should also look to report the individual repeatability of behavioural traits, and to correctly identify measures of uncertainty (error bars). The review highlights robust methodology, reveals promising techniques on which to focus future assay development, and collates relevant information for conservation managers.
Collapse
Affiliation(s)
- Natasha D Harrison
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| | - Rochelle Steven
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Environmental and Conservation Sciences, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Ben L Phillips
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jan M Hemmi
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- The UWA Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - Adrian F Wayne
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Manjimup, WA, 6258, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
3
|
Scoleri VP, Ingram J, Johnson CN, Jones ME. Top predator restricts the niche breadth of prey: effects of assisted colonization of Tasmanian devils on a widespread omnivorous prey. Proc Biol Sci 2023; 290:20222113. [PMID: 36919429 PMCID: PMC10015323 DOI: 10.1098/rspb.2022.2113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Few landscape-scale experiments test the effects of predators on the abundance and distribution of prey across habitat gradients. We use the assisted colonization of a top predator, the Tasmanian devil (Sarcophilus harrisii), to test the impacts of predation on the abundance, habitat use and temporal activity of a widespread prey species, the omnivorous common brushtail possum (Trichosurus vulpecula). Before introduction of devils to Maria Island, Tasmania, Australia, in 2012, possums were abundant in open grasslands as well as forests. Predation by devils caused high mortality of possums in grasslands, but individuals with access to trees had a higher survival probability. Possum abundance declined across the whole island from 2012-2016, as possums disappeared almost completely from grasslands and declined in drier forests with more open understorey. Abundance remained stable in wet forests, which are not preferred habitat for possums but provide better refuge from devils. Abundance and habitat use of possums remained unchanged at a control site on the adjacent Tasmanian mainland, where the devil population was low and stable. This study demonstrates how spatial variation in predator-caused mortality can limit both abundance and habitat breadth in generalist prey species, excluding them entirely from certain habitats.
Collapse
Affiliation(s)
- Vincent P Scoleri
- School of Natural Sciences, University of Tasmania, Sandy Bay 7005, Australia
| | - Janeane Ingram
- School of Geography, Planning and Spatial Sciences, University of Tasmania, Sandy Bay 7005, Australia
| | - Christopher N Johnson
- School of Natural Sciences, University of Tasmania, Sandy Bay 7005, Australia.,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Sandy Bay 7005, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Sandy Bay 7005, Australia
| |
Collapse
|
4
|
Farquharson KA, McLennan EA, Cheng Y, Alexander L, Fox S, Lee AV, Belov K, Hogg CJ. Restoring faith in conservation action: Maintaining wild genetic diversity through the Tasmanian devil insurance program. iScience 2022; 25:104474. [PMID: 35754729 PMCID: PMC9218385 DOI: 10.1016/j.isci.2022.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Conservation breeding programs aim to maintain 90% wild genetic diversity, but rarely assess functional diversity. Here, we compare both genome-wide and functional diversity (in over 500 genes) of Tasmanian devils (Sarcophilus harrisii) within the insurance metapopulation and across the species’ range (64,519 km2). Populations have declined by 80% since 1996 due to a contagious cancer, devil facial tumor disease (DFTD). However, predicted local extinctions have not occurred. Recent suggestions of selection for “resistance” alleles in the wild precipitated concerns that insurance population devils may be unsuitable for translocations. Using 830 wild samples collected at 31 locations between 2012 and 2021, and 553 insurance metapopulation devils, we show that the insurance metapopulation is representative of current wild genetic diversity. Allele frequencies at DFTD-associated loci were not substantially different between captive and wild devils. Methods presented here are valuable for others investigating evolutionary potential in threatened species, particularly ones under significant selective pressures. Developed target capture to assess functional diversity at over 500 genes Fine-scale structure exists in the genetically depauperate Tasmanian devil Insurance metapopulation is representative of wild genetic diversity Allele frequencies at disease-associated loci were similar in captivity to the wild
Collapse
Affiliation(s)
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lauren Alexander
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Andrew V Lee
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.,San Diego Zoo Wildlife Alliance, PO BOX 120551, San Diego, CA 92112, USA
| |
Collapse
|
5
|
Assessment of appropriate species-specific time intervals to integrate GPS telemetry data in ecological niche models. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Dunlop JA, Watson MJ. The hitchhiker's guide to Australian conservation: A parasitological perspective on fauna translocations. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Judy A. Dunlop
- School of Agriculture and Environment University of Western Australia Perth Western Australia Australia
- Western Australian Feral Cat Working Group Perth Western Australia Australia
- Institute for Land, Water & Society Charles Sturt University Albury New South Wales Australia
- Western Australian Biodiversity Science Institute 2/133 St George's Terrace Perth Western Australia 6000 Australia
| | - Maggie J. Watson
- Institute for Land, Water & Society Charles Sturt University Albury New South Wales Australia
| |
Collapse
|
7
|
Espejo C, Wilson R, Pye RJ, Ratcliffe JC, Ruiz-Aravena M, Willms E, Wolfe BW, Hamede R, Hill AF, Jones ME, Woods GM, Lyons AB. Cathelicidin-3 Associated With Serum Extracellular Vesicles Enables Early Diagnosis of a Transmissible Cancer. Front Immunol 2022; 13:858423. [PMID: 35422813 PMCID: PMC9004462 DOI: 10.3389/fimmu.2022.858423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumor disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (Sarcophilus harrisii). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumor lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analyzed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples using data-independent acquisition mass spectrometry approaches. The antimicrobial peptide cathelicidin-3 (CATH3), released by innate immune cells, was enriched in serum EV samples of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis; 93.8% sensitivity and 94.1% specificity). Although high expression of antimicrobial peptides has been mostly related to inflammatory diseases, our results suggest that they can be also used as accurate cancer biomarkers, suggesting a mechanistic role in tumorous processes. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperiled Tasmanian devil population.
Collapse
Affiliation(s)
- Camila Espejo
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Ruth J Pye
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Julian C Ratcliffe
- La Trobe University Bioimaging Platform, La Trobe University, Bundoora, VIC, Australia
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.,Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Eduard Willms
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Barrett W Wolfe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.,CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
8
|
McLennan EA, Belov K, Hogg CJ, Grueber CE. How much is enough? Sampling intensity influences estimates of reproductive variance in an introduced population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02462. [PMID: 34614257 DOI: 10.1002/eap.2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Conservation introductions to islands and fenced enclosures are increasing as in situ mitigations fail to keep pace with population declines. Few studies consider the potential loss of genetic diversity and increased inbreeding if released individuals breed disproportionately. As funding is limited and post-release monitoring expensive for conservation programs, understanding how sampling effort influences estimates of reproductive variance is useful. To investigate this relationship, we used a well-studied population of Tasmanian devils (Sarcophilus harrisii) introduced to Maria Island, Tasmania, Australia. Pedigree reconstruction based on molecular data revealed high variance in number of offspring per breeder and high proportions of unsuccessful individuals. Computational subsampling of 20%, 40%, 60%, and 80% of observed offspring resulted in inaccurate estimates of reproductive variance compared to the pedigree reconstructed with all sampled individuals. With decreased sampling effort, the proportion of inferred unsuccessful individuals was overestimated and the variance in number of offspring per breeder was underestimated. To accurately estimate reproductive variance, we recommend sampling as many individuals as logistically possible during the early stages of population establishment. Further, we recommend careful selection of colonizing individuals as they may be disproportionately represented in subsequent generations. Within the conservation management context, our results highlight important considerations for sample collection and post-release monitoring during population establishment.
Collapse
Affiliation(s)
- Elspeth A McLennan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
- San Diego Zoo Global, PO BOX 120551, San Diego, California, 92112, USA
| |
Collapse
|
9
|
Attard MRG, Lewis A, Wroe S, Hughes C, Rogers TL. Whisker growth in Tasmanian devils (
Sarcophilus harrisii
) and applications for stable isotope studies. Ecosphere 2021. [DOI: 10.1002/ecs2.3846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Marie R. G. Attard
- Department of Biological Sciences Royal Holloway University of London Egham TW20 0EX UK
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Anna Lewis
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
- The Carnivore Conservancy Ulverstone Tasmania Australia
| | - Stephen Wroe
- Function, Evolution and Anatomy Research Laboratory School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Channing Hughes
- The Carnivore Conservancy Ulverstone Tasmania Australia
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - Tracey L. Rogers
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
10
|
Heit DR, Ortiz-Calo W, Montgomery RA. Landscape complexity persists as a critical source of bias in terrestrial animal home range estimation. Ecology 2021; 102:e03427. [PMID: 34105787 DOI: 10.1002/ecy.3427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/29/2020] [Accepted: 03/15/2021] [Indexed: 11/11/2022]
Abstract
Home ranges provide a conceptual and quantitative representation of animal-habitat associations over time. Methods to estimate home ranges have swiftly progressed by dynamically accounting for various sources of bias. Across that period of growth, one potentially influential source of bias has yet to be robustly scrutinized. Animals inhabiting the terrestrial spatial domain make movement decisions in environments with variable landscape complexity. Despite that reality, home range estimation methods tend to be informed by two-dimensional (2D) data (i.e., x and y coordinates), which analytically presume that these landscapes are flat. This analytical tendency potentially misrepresents the configuration and size of animal home range estimates. To examine the prevalence of this bias, we reviewed literature of terrestrial animal home range estimation published between 2000 and 2019. We recorded the proportion of studies that (1) recognized and (2) incorporated landscape complexity. Over 22.0% (n = 271) of the 1,203 studies recognized the importance of landscape complexity for animal movement. Interestingly, just 0.7% (n = 8) incorporated landscape complexity into the home range estimation. We infer then that landscape complexity represents an important source of bias resulting in the underestimation of terrestrial animal home range size. Given the influence of landscape complexity on terrestrial animal decision making, energetics, and fitness, our analysis highlights an important gap in current home range methodologies. We discuss the implications of our analysis for biased understandings of terrestrial animal spatial ecology with subsequent impacts on management and conservation practices built upon these estimates.
Collapse
Affiliation(s)
- David R Heit
- Research on the Ecology of Carnivores and their Prey Laboratory, Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan, 48823, USA
| | - Waldemar Ortiz-Calo
- Research on the Ecology of Carnivores and their Prey Laboratory, Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan, 48823, USA
| | - Robert A Montgomery
- Research on the Ecology of Carnivores and their Prey Laboratory, Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan, 48823, USA.,Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Tubney House, Abingdon Road, Tubney, Oxon, OX13 5QL, UK
| |
Collapse
|
11
|
Tamura J, Ingram J, Martin AM, Burridge CP, Carver S. Contrasting population manipulations reveal resource competition between two large marsupials: bare-nosed wombats and eastern grey kangaroos. Oecologia 2021; 197:313-325. [PMID: 34095983 DOI: 10.1007/s00442-021-04959-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022]
Abstract
Resource competition is an important interaction that can structure ecological communities, but is difficult to demonstrate in nature, and rarely demonstrated for large mammals including marsupials. We analysed 10 years of population survey data to investigate resource competition between bare-nosed wombats (Vombatus ursinus) and eastern grey kangaroos (Macropus giganteus) at two sites to assess whether resource competition is occurring. At one site, wombat abundance was reduced by increased mortality from mange disease, whereas at the other site, kangaroo abundance was reduced primarily by culling. We used the modified Lotka-Volterra competition (LVC) models to describe the mechanism of resource competition and fitted those models to the empirical data by maximum likelihood estimation. We found strong negative relationships between the abundance of wombats and kangaroos at each site, and resource competition was also mechanistically supported by the modified LVC models. The estimated competition coefficients indicate that bare-nosed wombats are a slightly superior competitor of eastern grey kangaroos than vice versa, and that intraspecific competition is almost twice as strong as interspecific competition. In addition, this study facilitated the calculation of the transmission rate associated with mange disease at one site (0.011), and the removal rate owing to culling, the introduction of a predator species, and drought at the other site (0.0006). Collectively, this research represents a rare empirical demonstration of resource competition between large mammals and contributes new insight into the ecology of two of Australia's largest grazing marsupials.
Collapse
Affiliation(s)
- Julie Tamura
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, Australia.
| | - Janeane Ingram
- School of Geography, Planning and Spatial Sciences, University of Tasmania, Sandy Bay, TAS, Australia
| | - Alynn M Martin
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, Australia
| | | | - Scott Carver
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, Australia
| |
Collapse
|
12
|
Reinstating trophic cascades as an applied conservation tool to protect forest ecosystems from invasive grey squirrels (Sciurus carolinensis). FOOD WEBS 2020. [DOI: 10.1016/j.fooweb.2020.e00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Morris SD, Johnson CN, Brook BW. Roughing it: terrain is crucial in identifying novel translocation sites for the vulnerable brush-tailed rock-wallaby ( Petrogale pencillata). ROYAL SOCIETY OPEN SCIENCE 2020; 7:201603. [PMID: 33489291 PMCID: PMC7813239 DOI: 10.1098/rsos.201603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Translocations-the movement of species from one place to another-are likely to become more common as conservation attempts to protect small isolated populations from threats posed by extreme events such as bushfires. The recent Australian mega-fires burnt almost 40% of the habitat of the brush-tailed rock-wallaby (Petrogale pencillata), a threatened species whose distribution is already restricted, primarily due to predation by invasive species. This chronic threat of over-predation, coupled with the possible extinction of the genetically distinct southern population (approx. 40 individuals in the wild), makes this species a candidate for a conservation translocation. Here, we use species distribution models to identify translocation sites for the brush-tailed rock-wallaby. Our models exhibited high predictive accuracy, and show that terrain roughness, a surrogate for predator refugia, is the most important variable. Tasmania, which currently has no rock-wallabies, showed high suitability and is fox-free, making it a promising candidate site. We outline our argument for the trial translocation of rock-wallaby to Maria Island, located off Tasmania's eastern coast. This research offers a transparent assessment of the translocation potential of a threatened species, which can be adapted to other taxa and systems.
Collapse
Affiliation(s)
- Shane D. Morris
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Christopher N. Johnson
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Barry W. Brook
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
14
|
Vinson SG, Johnson AP, Mikac KM. Current estimates and vegetation preferences of an endangered population of the vulnerable greater glider at Seven Mile Beach National Park. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Simon G. Vinson
- Centre for Sustainable Ecosystem Solutions School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong New South Wales2522Australia
| | - Aidan P. Johnson
- John Therry Catholic College Rosemeadow New South Wales Australia
| | - Katarina M. Mikac
- Centre for Sustainable Ecosystem Solutions School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong New South Wales2522Australia
| |
Collapse
|
15
|
Grueber CE, Peel E, Wright B, Hogg CJ, Belov K. A Tasmanian devil breeding program to support wild recovery. Reprod Fertil Dev 2020; 31:1296-1304. [PMID: 32172782 DOI: 10.1071/rd18152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023] Open
Abstract
Tasmanian devils are threatened in the wild by devil facial tumour disease: a transmissible cancer with a high fatality rate. In response, the Save the Tasmanian Devil Program (STDP) established an 'insurance population' to enable the preservation of genetic diversity and natural behaviours of devils. This breeding program includes a range of institutions and facilities, from zoo-based intensive enclosures to larger, more natural environments, and a strategic approach has been required to capture and maintain genetic diversity, natural behaviours and to ensure reproductive success. Laboratory-based research, particularly genetics, in tandem with adaptive management has helped the STDP reach its goals, and has directly contributed to the conservation of the species in the wild. Here we review this work and show that the Tasmanian devil breeding program is a powerful example of how genetic research can be used to understand and improve reproductive success in a threatened species.
Collapse
Affiliation(s)
- C E Grueber
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - E Peel
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - B Wright
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - C J Hogg
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - K Belov
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Gooley RM, Hogg CJ, Fox S, Pemberton D, Belov K, Grueber CE. Inbreeding depression in one of the last DFTD-free wild populations of Tasmanian devils. PeerJ 2020; 8:e9220. [PMID: 32587794 PMCID: PMC7304431 DOI: 10.7717/peerj.9220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/28/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Vulnerable species experiencing inbreeding depression are prone to localised extinctions because of their reduced fitness. For Tasmanian devils, the rapid spread of devil facial tumour disease (DFTD) has led to population declines and fragmentation across the species' range. Here we show that one of the few remaining DFTD-free populations of Tasmanian devils is experiencing inbreeding depression. Moreover, this population has experienced a significant reduction in reproductive success over recent years. METHODS We used 32 microsatellite loci to examine changes in genetic diversity and inbreeding in the wild population at Woolnorth, alongside field data on breeding success from females to test for inbreeding depression. RESULTS Wefound that maternal internal relatedness has a negative impact on litter sizes. The results of this study imply that this population may be entering an extinction vortex and that to protect the population genetic rescue should be considered. This study provides conservation managers with useful information for managing wild devils and provides support for the "Wild Devil Recovery Program", which is currently augmenting small, isolated populations.
Collapse
Affiliation(s)
- Rebecca M. Gooley
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
- Toledo Zoo, Toledo, OH, United States of America
| | - David Pemberton
- Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- San Diego Zoo Global, San Diego, CA, United States of America
| |
Collapse
|
17
|
McLennan EA, Grueber CE, Wise P, Belov K, Hogg CJ. Mixing genetically differentiated populations successfully boosts diversity of an endangered carnivore. Anim Conserv 2020. [DOI: 10.1111/acv.12589] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- E. A. McLennan
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - C. E. Grueber
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
- San Diego Zoo Global San Diego CA USA
| | - P. Wise
- Save the Tasmanian Devil Program, DPIPWE Hobart Tas Australia
| | - K. Belov
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - C. J. Hogg
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
18
|
Russell T, Lane A, Clarke J, Hogg C, Morris K, Keeley T, Madsen T, Ujvari B. Multiple paternity and precocial breeding in wild Tasmanian devils, Sarcophilus harrisii (Marsupialia: Dasyuridae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Polyandry, a common reproductive strategy in various animal species, has potential female benefits, which include enhanced offspring fitness. Benefits can be direct, such as reduced risk of male infanticide of offspring, or indirect, such as increased genetic diversity of offspring and the acquisition of ‘good genes’. Multiple paternity of litters has been recorded in numerous marsupial species but has not been reported in Tasmanian devils, Sarcophilus harrisii (Boitard). We investigated whether multiple paternity occurred in litters within a wild population of Tasmanian devils. Using major histocompatibility complex-linked and neutral microsatellite markers, the paternity of nine litters was analysed. We found multiple paternity in four out of nine litters and that yearling (> 1, < 2 years old) male devils were siring offspring. This is the first record of multiple paternity and of male precocial breeding in wild Tasmanian devils. To date, there are no data relating to the subsequent survival of devils from single- vs. multiple-sired litters; therefore, we do not know whether multiple paternity increases offspring survival in the wild. These results have implications for the Tasmanian devil captive insurance programme, because group housing can lead to multiple-sired litters, making the maintenance of genetic diversity over time difficult to manage.
Collapse
Affiliation(s)
- Tracey Russell
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Amanda Lane
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Judy Clarke
- Tasmanian Department of Primary Industries, Parks, Water and Environment, Hobart, TAS, Australia
| | - Carolyn Hogg
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Katrina Morris
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Tamara Keeley
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| | - Thomas Madsen
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
19
|
McLennan EA, Wright BR, Belov K, Hogg CJ, Grueber CE. Too much of a good thing? Finding the most informative genetic data set to answer conservation questions. Mol Ecol Resour 2019; 19:659-671. [DOI: 10.1111/1755-0998.12997] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Elspeth A. McLennan
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Belinda R. Wright
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Katherine Belov
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
- San Diego Zoo Global San Diego California
| |
Collapse
|
20
|
Grueber CE, Fox S, McLennan EA, Gooley RM, Pemberton D, Hogg CJ, Belov K. Complex problems need detailed solutions: Harnessing multiple data types to inform genetic management in the wild. Evol Appl 2019; 12:280-291. [PMID: 30697339 PMCID: PMC6346650 DOI: 10.1111/eva.12715] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
For bottlenecked populations of threatened species, supplementation often leads to improved population metrics (genetic rescue), provided that guidelines can be followed to avoid negative outcomes. In cases where no "ideal" source populations exist, or there are other complicating factors such as prevailing disease, the benefit of supplementation becomes uncertain. Bringing multiple data and analysis types together to plan genetic management activities can help. Here, we consider three populations of Tasmanian devil, Sarcophilus harrisii, as candidates for genetic rescue. Since 1996, devil populations have been severely impacted by devil facial tumour disease (DFTD), causing significant population decline and fragmentation. Like many threatened species, the key threatening process for devils cannot currently be fully mitigated, so species management requires a multifaceted approach. We examined diversity of 31 putatively neutral and 11 MHC-linked microsatellite loci of three remnant wild devil populations (one sampled at two time-points), alongside computational diversity projections, parameterized by field data from DFTD-present and DFTD-absent sites. Results showed that populations had low diversity, connectivity was poor, and diversity has likely decreased over the last decade. Stochastic simulations projected further diversity losses. For a given population size, the effects of DFTD on population demography (including earlier age at death and increased female productivity) did not impact diversity retention, which was largely driven by final population size. Population sizes ≥500 (depending on the number of founders) were necessary for maintaining diversity in otherwise unmanaged populations, even if DFTD is present. Models indicated that smaller populations could maintain diversity with ongoing immigration. Taken together, our results illustrate how multiple analysis types can be combined to address complex population genetic challenges.
Collapse
Affiliation(s)
- Catherine E. Grueber
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- San Diego Zoo GlobalSan DiegoCalifornia
| | - Samantha Fox
- Save the Tasmanian Devil ProgramDPIPWEHobartTasmaniaAustralia
- Toledo ZooToledoOhio
| | - Elspeth A. McLennan
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Rebecca M. Gooley
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - David Pemberton
- Save the Tasmanian Devil ProgramDPIPWEHobartTasmaniaAustralia
| | - Carolyn J. Hogg
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Zoo and Aquarium Association AustralasiaMosmanNew South WalesAustralia
| | - Katherine Belov
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
21
|
Hohenlohe PA, McCallum HI, Jones ME, Lawrance MF, Hamede RK, Storfer A. Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. CONSERV GENET 2019; 20:81-87. [PMID: 31551664 PMCID: PMC6759055 DOI: 10.1007/s10592-019-01157-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/09/2019] [Indexed: 11/26/2022]
Abstract
Maintenance of adaptive genetic variation has long been a goal of management of natural populations, but only recently have genomic tools allowed identification of specific loci associated with fitness-related traits in species of conservation concern. This raises the possibility of managing for genetic variation directly relevant to specific threats, such as those due to climate change or emerging infectious disease. Tasmanian devils (Sarcophilus harrisii) face the threat of a transmissible cancer, devil facial tumor disease (DFTD), that has decimated wild populations and led to intensive management efforts. Recent discoveries from genomic and modeling studies reveal how natural devil populations are responding to DFTD, and can inform management of both captive and wild devil populations. Notably, recent studies have documented genetic variation for disease-related traits and rapid evolution in response to DFTD, as well as potential mechanisms for disease resistance such as immune response and tumor regression in wild devils. Recent models predict dynamic persistence of devils with or without DFTD under a variety of modeling scenarios, although at much lower population densities than before DFTD emerged, contrary to previous predictions of extinction. As a result, current management that focuses on captive breeding and release for maintaining genome-wide genetic diversity or demographic supplementation of populations could have negative consequences. Translocations of captive devils into wild populations evolving with DFTD can cause outbreeding depression and/or increases in the force of infection and thereby the severity of the epidemic, and we argue that these risks outweigh any benefits of demographic supplementation in wild populations. We also argue that genetic variation at loci associated with DFTD should be monitored in both captive and wild populations, and that as our understanding of DFTD-related genetic variation improves, considering genetic management approaches to target this variation is warranted in developing conservation strategies for Tasmanian devils.
Collapse
Affiliation(s)
- Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Hamish I. McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Menna E. Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Matthew F. Lawrance
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rodrigo K. Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
22
|
Rendall AR, Coetsee AL, Sutherland DR. Predicting suitable release sites for assisted colonisations: a case study of eastern barred bandicoots. ENDANGER SPECIES RES 2018. [DOI: 10.3354/esr00893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Ingram J. An adaptive management case study for managing macropods on Maria Island National Park, Tasmania, Australia: adding devils to the detail. ACTA ACUST UNITED AC 2018. [DOI: 10.1071/pc17045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Adaptive management is driven by structured decision making and evidence from monitoring in a ‘learning’ framework that guides management actions. In a conservation context, this iterative approach includes evaluation of the impacts on natural processes. On Maria Island National Park, Tasmania, Australia, introduced Forester kangaroo, Bennetts wallaby and Tasmanian pademelon have been intensively managed by an annual cull since 1994. Management actions were triggered by high parasite loads, intense grazing pressure and high juvenile mortality during drought periods. Criticism of the annual cull from animal welfare groups initiated the development of an adaptive management approach for decision making that replaces the historic ‘trial and error’ process. Following a comprehensive review of the existing macropod management program in 2011, an integrated monitoring strategy was established to provide evidence for informed decision making. Assessments of animal health and estimates of population trends are the key indicators for management actions to occur. Maintaining viable macropod populations and protecting natural values form the basis of management objectives. Management actions in each year, for each species, represent ‘treatments’ as spatial replication is not possible at such a small scale. An adaptive management approach for macropod management on Maria Island has resulted in only one species being culled in 2014 and 2015 for the first time in almost 20 years. However the recent introduction of a major predator, the Tasmanian devil, has increased uncertainty for long-term macropod management on Maria Island with no cull occurring in 2016 and 2017.
Collapse
|
24
|
McLennan EA, Gooley RM, Wise P, Belov K, Hogg CJ, Grueber CE. Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii). CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1017-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Parrott ML, Coetsee AL, Hartnett CM, Magrath MJL. New hope for the Eastern barred bandicootPerameles gunniiafter 27 years of recovery effort. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/izy.12157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M. L. Parrott
- Wildlife Conservation and Science; Zoos Victoria; Parkville 3052 Australia
| | - A. L. Coetsee
- Wildlife Conservation and Science; Zoos Victoria; Parkville 3052 Australia
| | - C. M. Hartnett
- Wildlife Conservation and Science; Zoos Victoria; Parkville 3052 Australia
| | - M. J. L. Magrath
- Wildlife Conservation and Science; Zoos Victoria; Parkville 3052 Australia
| |
Collapse
|
26
|
Groenewegen R, Harley D, Hill R, Coulson G. Assisted colonisation trial of the eastern barred bandicoot (Perameles gunnii) to a fox-free island. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr16198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Assisted colonisation has the potential to protect species from intractable threats within their historical ranges. The Australian mainland subspecies of the eastern barred bandicoot (Perameles gunnii) is extinct in the wild, with surviving populations restricted to small sites protected by predator–barrier fences. PVA modelling shows that a self-sustaining bandicoot population would require an area free of the introduced red fox (Vulpes vulpes) of at least 2500ha. French Island is outside the historic range of the species, but is fox-free and contains around 9000ha of potentially suitable habitat. Aims This study will assess the suitability of French Island as a potential site for a self-sustaining eastern barred bandicoot population by conducting a 1-year assisted colonisation trial to assess habitat use, body condition and survival. Methods Between July and September 2012, 18 adult bandicoots were released. We radio-tracked bandicoots using intraperitoneal radio-transmitters for up to 122 days and trapped fortnightly. Key results The release group met the three measures of success: (1) appropriate habitat use; (2) recovery of post-release bodyweight; and (3) founder survival exceeding 100 days. Habitat use and body condition throughout the trial reflected that of mainland populations, and seven bandicoots survived longer than 100 days. Mortality was greatest in the first month, with veterinary investigations confirming two deaths due to cat predation, two deaths from toxoplasmosis and one unknown cause of death. Bandicoots that survived longer than 100 days occupied higher, drier ground than those that did not. Toxoplasmosis cases were associated with lower topographic position on the site. Conclusions Our results suggest that French Island provides suitable habitat for the establishment of a population of eastern barred bandicoots. On French Island, toxoplasmosis was identified as an important source of mortality in addition to cat predation, and warrants further investigation. Implications Given the costs and challenges of predator control and the maintenance of predator exclusion fences, assisted colonisation to one or more fox-free islands remains the most viable option to establish self-sustaining bandicoot populations. Our results highlight the value in conducting trial releases ahead of major translocations.
Collapse
|
27
|
Hogg CJ, Lee AV, Srb C, Hibbard C. Metapopulation management of an Endangered species with limited genetic diversity in the presence of disease: the Tasmanian devilSarcophilus harrisii. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/izy.12144] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- C. J. Hogg
- School of Environmental and Life Sciences; University of Sydney; Sydney NSW 2006 Australia
- Zoo and Aquarium Association Australasia; Mosman NSW 2088 Australia
| | - A. V. Lee
- Save the Tasmanian Devil Program; DPIPWE; Hobart Tasmania 7001 Australia
| | - C. Srb
- Healesville Sanctuary; Healesville VIC 3777 Australia
| | - C. Hibbard
- Zoo and Aquarium Association Australasia; Mosman NSW 2088 Australia
| |
Collapse
|