1
|
Cuervo W, Gomez C, Tarnonsky F, Fernandez-Marenchino I, Podversich F, Maderal A, Schulmeister TM, Vargas JDJ, DiLorenzo N. Effects of cashew nutshell extract inclusion into a high-grain finishing diet on methane emissions, nutrient digestibility, and ruminal fermentation in beef steers. J Anim Sci 2025; 103:skae359. [PMID: 39574184 PMCID: PMC11705085 DOI: 10.1093/jas/skae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
By 2050, the U.S. beef industry must produce an extra 40 million tons of beef to satisfy the global demand. Such an increase in inventory will undoubtedly enhance methane (CH4) production from livestock, which should be reduced by over 20%. The addition of plant secondary metabolites, such as anacardic acid present in cashew nutshell extract (CNSE), has shown promising results in reducing CH4 yield, although its effects seemed to be diet-dependent. This study evaluated the addition of CNSE to a high-grain diet (85:15 grain:forage) on in vivo CH4 emissions, nutrient digestibility, performance, feeding behavior, and ruminal fermentation parameters of beef steers. Sixteen Angus crossbred steers [599 ± 40 kg of bodyweight (BW)] and 6 ruminally cannulated crossbred steers (490 ± 51 kg of BW) were utilized in a crossover design with 2 experimental periods of 56 d each, composed by 14 d of adaptation, 35 d of measurement, and 7 d of washout. Following adaptation, steers were sorted by BW, and assigned to receive no additive (CON) or CNSE at 5 g/steer/d. Data were analyzed using the MIXED procedure of SAS. Inclusion of CNSE increased (P < 0.05) propionate concentration and molar proportion (MP; mol/100 mol), tended to decrease acetate MP (P = 0.10), reduced the acetate:propionate (A:P) ratio (P = 0.05), and MP of branched-chain volatile fatty acids (P < 0.01). Neither in vitro organic matter digestibility nor in vitro CH4 yield were affected by CNSE inclusion (P > 0.05). Steers receiving CNSE exhibited greater (P < 0.05) final BW, dry matter intake (DMI), and average daily gain (ADG) but lesser (P < 0.05) in vivo CH4 emission rate (g/d), yield (g/kg of DMI), and intensity (g/kg of ADG). Meal length, bunk visit duration, and apparent total tract digestibility of DM increased (P < 0.05) after CNSE addition. Considering CNSE-supplemented steers spent more time in the feedbunk and exhibited higher DMI, CH4 mitigation was unlikely associated with intake reduction. The addition of CNSE to a high-grain diet in beef steers demonstrated significant improvements in animal performance and reduced CH4 emissions, as the result of shifts in ruminal fermentation patterns, favoring propionate instead of acetate concentration, leading to a reduction in the A:P ratio. CNSE shows promise as a strategy to enhance beef industry sustainability.
Collapse
Affiliation(s)
- Wilmer Cuervo
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| | - Camila Gomez
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| | - Federico Tarnonsky
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| | | | - Federico Podversich
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| | - Araceli Maderal
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| | - Tessa M Schulmeister
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| | - Juan de J Vargas
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| | - Nicolas DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| |
Collapse
|
2
|
Cuervo W, Gómez C, Tarnonsky F, Fernandez-Marenchino I, Maderal A, Podversich F, Vargas JDJ, DiLorenzo N. Effect of Cashew Nutshell Extract, Saponins and Tannins Addition on Methane Emissions, Nutrient Digestibility and Feeding Behavior of Beef Steers Receiving a Backgrounding Diet. Animals (Basel) 2024; 14:3126. [PMID: 39518849 PMCID: PMC11545760 DOI: 10.3390/ani14213126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The beef industry contributes to greenhouse gas emissions through enteric methane emissions, exacerbating climate change. Anacardic acid in cashew nutshell extract (CNSE), saponins and tannins (ST) are plant secondary metabolites that show promise in methane mitigation via antimicrobial effects, potentially exerting changes in ruminal fermentation patterns. This study examined the impact of CNSE, ST, and their combination on methane emissions, digestibility, intake, and performance of sixteen Angus crossbred steers (347 ± 30 kg) receiving a backgrounding diet (70:30 corn silage: cottonseed burrs). The study used a 4 × 4 Latin square design (4 steers, 4 treatments, 4 periods) with a 2 × 2 factorial arrangement, including the main effects of additive (CNSE or ST) fed individually or combined. Thus, steers received the following treatments: (1) no additive, (2) CNSE only, (3) ST only, or (4) both (CNSEST). Non-supplemented steers registered eight more feedbunk visits/d than ST-steers and spent an extra 10 min/d on the feedbunk. The addition of ST tended to increase dry matter, organic matter, and neutral detergent fiber intake. Additives fed individually reduced CP digestibility. Intake of the carrier containing CNSE only was lesser and coincided with a greater methane yield in that treatment. Digestibility and methane mitigation were improved after CNSEST compared with individual inclusion, suggesting synergistic reactions enhanced methane mitigation effects in fibrous diets without affecting the digestibility of nutrients nor animal growth performance.
Collapse
Affiliation(s)
- Wilmer Cuervo
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA; (C.G.); (F.T.); (I.F.-M.); (A.M.); (F.P.); (J.d.J.V.)
| | | | | | | | | | | | | | - Nicolas DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA; (C.G.); (F.T.); (I.F.-M.); (A.M.); (F.P.); (J.d.J.V.)
| |
Collapse
|
3
|
Gwatibaya S, Murungweni C, Mpofu I, Jingura R, Tigere AT, Tererai B. Enteric methane emission estimates for the Zimbabwean Sanga cattle breeds of Tuli and Mashona. Trop Anim Health Prod 2023; 55:111. [PMID: 36920640 DOI: 10.1007/s11250-023-03539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The effectiveness of methane mitigation in ruminant livestock production systems depends on the accuracy of estimating methane emission factors and providing accurate emission inventories. Following the Paris Climate agreement, it is recommended that countries adopt the Tier-2 approach for estimating enteric methane emissions from ruminants instead of the Tier-1 approach currently used by most countries. This study sought to provide base line enteric methane emission estimates for the Tuli and Mashona Sanga cattle breeds in Zimbabwe using the IPCC Tier-2 model. Using animal characterization data collected from 412 cattle from Grasslands Research Institute and 406 cattle from Makoholi Research Institute, net energy requirements were estimated. From this and the estimate for digestibility, gross energy intake and dry matter intake were estimated. Gross energy intakes and the estimated methane conversion factor were used to estimate enteric methane emissions. Mean emission factors for Tuli were 45.1, 56, 28.5, 28.4 and 20.6 kg CH4/head/year for cows, bulls, heifers, steers and calves, respectively. For Mashona, they were 47.8, 51.9, 29, 29.1 and 20.7 kgCH4/head/year for cows, bulls, heifers, steers and calves, respectively. Generally, estimated Tier-2 emission factors were significantly different from the IPCC Tier-1 default emission factors. This study concluded that enteric methane emission factors estimated using the IPCC Tier-2 model offer insights into the controversial use of the default IPCC Tier-1 emission factors.
Collapse
Affiliation(s)
- Showman Gwatibaya
- Department of Animal Production and Technology, Chinhoyi University of Technology, Off-Chirundu Road Private Bag, 7724, Chinhoyi, Zimbabwe.
| | - Chrispen Murungweni
- Department of Animal Production and Technology, Chinhoyi University of Technology, Off-Chirundu Road Private Bag, 7724, Chinhoyi, Zimbabwe
| | - Irvine Mpofu
- Department of Animal Production and Technology, Chinhoyi University of Technology, Off-Chirundu Road Private Bag, 7724, Chinhoyi, Zimbabwe
| | - Raphael Jingura
- Department of Animal Production and Technology, Chinhoyi University of Technology, Off-Chirundu Road Private Bag, 7724, Chinhoyi, Zimbabwe
| | - Accadius Tinarwo Tigere
- Grasslands Research Institute, Agricultural Research Innovation and Development Directorate, Fifth Street Extension P O, Box CY594, Causeway Harare, Zimbabwe
| | - Bosiwe Tererai
- Makoholi Research Institute, Agricultural Research Innovation and Development Directorate, Fifth Street Extension P O, Box CY594, Causeway Harare, Zimbabwe
| |
Collapse
|
4
|
Smith PE, Kelly AK, Kenny DA, Waters SM. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems. Front Vet Sci 2022; 9:958340. [PMID: 36619952 PMCID: PMC9817038 DOI: 10.3389/fvets.2022.958340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ruminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.
Collapse
Affiliation(s)
- Paul E. Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland,*Correspondence: Paul E. Smith
| | - Alan K. Kelly
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| | - Sinéad M. Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| |
Collapse
|
5
|
Relationships between enteric methane production and economically important traits in beef cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Invited review: Current enteric methane mitigation options. J Dairy Sci 2022; 105:9297-9326. [DOI: 10.3168/jds.2022-22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
|
7
|
Holder AL, Gross MA, Moehlenpah AN, Goad CL, Rolf M, Walker RS, Rogers JK, Lalman DL. Effects of diet on feed intake, weight change, and gas emissions in beef cows. J Anim Sci 2022; 100:skac257. [PMID: 35952719 PMCID: PMC9527298 DOI: 10.1093/jas/skac257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to examine the effects of diet energy density on ranking for dry matter intake (DMI), residual feed intake (RFI), and greenhouse gas emissions. Forty-two mature, gestating Angus cows (600 ± 69 kg body weight [BW]; body condition score [BCS] 5.3 ± 1.1) with a wide range in DMI expected progeny difference (-1.38 to 2.91) were randomly assigned to two diet sequences; forage then concentrate (FC) or concentrate then forage (CF). The forage diet consisted of long-stem native grass hay plus protein supplement (HAY; 1.96 Mcal ME/kg DM). The concentrate diet consisted of 35% chopped grass hay and 65% concentrate feeds on a dry matter basis (MIX; 2.5 Mcal ME/kg DM). The GreenFeed Emission Monitoring system was used to determine carbon dioxide (CO2), oxygen (O2), and methane (CH4) flux. Cow performance traits, ultrasound back fat and rump fat, feed DMI, and gas flux data were analyzed in a crossover design using a mixed model including diet, period, and sequence as fixed effects and pen and cow within sequence as random effects. For all measured traits excluding DMI, there was a diet × sequence interaction (P < 0.05). The correlation between MIX and HAY DMI was 0.41 (P = 0.067) and 0.47 (P = 0.03) for FC and CF sequences, respectively. There was no relationship (P > 0.66) between HAY and MIX average daily gain (ADG), regardless of sequence. Fifty-seven percent of the variation in DMI was explained by metabolic BW, ADG, and BCS for both diets during the first period. During the second period, the same three explanatory variables accounted for 38% and 37% of the variation in DMI for MIX and HAY diets, respectively. The negative relationship between BCS and DMI was more pronounced when cows consumed the MIX diet. There was no relationship between MIX and HAY RFI, regardless of sequence (P > 0.18). During the first period, correlations for CO2, CH4, and O2 with MIX DMI were 0.69, 0.81, and 0.56 (P ≤ 0.015), respectively, and 0.76, 0.74, and 0.64 (P < 0.01) with HAY DMI. During the second period, correlations for CO2, CH4, and O2 with MIX DMI were 0.62, 0.47, and 0.56 (P ≤ 0.11), respectively. However, HAY DMI during the second period was not related to gas flux (P > 0.47). Results from this experiment indicate that feed intake of two energy-diverse diets is moderately correlated while ADG while consuming the two diets is not related. Further experimentation is necessary to determine if gas flux data can be used to predict feed intake in beef cows.
Collapse
Affiliation(s)
- Amanda L Holder
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - Megan A Gross
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alexandra N Moehlenpah
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - Carla L Goad
- Department of Statistics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Megan Rolf
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - David L Lalman
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
8
|
Prune homolog 2 with BCH domain (PRUNE2) gene expression is associated with feed efficiency-related traits in Nelore steers. Mamm Genome 2022; 33:629-641. [PMID: 35840822 DOI: 10.1007/s00335-022-09960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Animal feeding is a critical factor in increasing producer profitability. Improving feed efficiency can help reduce feeding costs and reduce the environmental impact of beef production. Candidate genes previously identified for this trait in differential gene expression studies (e.g., case-control studies) have not examined continuous gene-phenotype variation, which is a limitation. The aim of this study was to investigate the association between the expression of five candidate genes in the liver, measured by quantitative real-time PCR and feed-related traits. We adopted a linear mixed model to associate liver gene expression from 52 Nelore steers with the following production traits: average daily gain (ADG), body weight (BW), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), Kleiber index (KI), metabolic body weight (MBW), residual feed intake (RFI), and relative growth ratio (RGR). The total expression of the prune homolog 2 (PRUNE2) gene was significantly associated with DMI, FCR, FE, and RFI (P < 0.05). Furthermore, we have identified a new transcript of PRUNE2 (TCONS_00027692, GenBank MZ041267) that was inversely correlated with FCR and FE (P < 0.05), in contrast to the originally identified PRUNE2 transcript. The cytochrome P450 subfamily 2B (CYP2B6), early growth response protein 1 (EGR1), collagen type I alpha 1 chain (COL1A1), and connective tissue growth factor (CTGF) genes were not associated with any feed efficiency-related traits (P > 0.05). The findings reported herein suggest that PRUNE2 expression levels affects feed efficiency-related traits variation in Nelore steers.
Collapse
|
9
|
Sakamoto LS, Souza LL, Gianvecchio SB, de Oliveira MHV, Silva JAIIDV, Canesin RC, Branco RH, Baccan M, Berndt A, de Albuquerque LG, Mercadante MEZ. Phenotypic association among performance, feed efficiency and methane emission traits in Nellore cattle. PLoS One 2021; 16:e0257964. [PMID: 34648502 PMCID: PMC8516271 DOI: 10.1371/journal.pone.0257964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Enteric methane (CH4) emissions are a natural process in ruminants and can result in up to 12% of energy losses. Hence, decreasing enteric CH4 production constitutes an important step towards improving the feed efficiency of Brazilian cattle herds. The aim of this study was to evaluate the relationship between performance, residual feed intake (RFI), and enteric CH4 emission in growing Nellore cattle (Bos indicus). Performance, RFI and CH4 emission data were obtained from 489 animals participating in selection programs (mid-test age and body weight: 414±159 days and 356±135 kg, respectively) that were evaluated in 12 performance tests carried out in individual pens (n = 95) or collective paddocks (n = 394) equipped with electronic feed bunks. The sulfur hexafluoride tracer gas technique was used to measure daily CH4 emissions. The following variables were estimated: CH4 emission rate (g/day), residual methane emission and emission expressed per mid-test body weight, metabolic body weight, dry matter intake (CH4/DMI), average daily gain, and ingested gross energy (CH4/GE). Animals classified as negative RFI (RFI<0), i.e., more efficient animals, consumed less dry matter (P <0.0001) and emitted less g CH4/day (P = 0.0022) than positive RFI animals (RFI>0). Nonetheless, more efficient animals emitted more CH4/DMI and CH4/GE (P < 0.0001), suggesting that the difference in daily intake between animals is a determinant factor for the difference in daily enteric CH4 emissions. In addition, animals classified as negative RFI emitted less CH4 per kg mid-test weight and metabolic weight (P = 0.0096 and P = 0.0033, respectively), i.e., most efficient animals could emit less CH4 per kg of carcass. In conclusion, more efficient animals produced less methane when expressed as g/day and per kg mid-test weight than less efficient animals, suggesting lower emissions per kg of carcass produced. However, it is not possible to state that feed efficiency has a direct effect on enteric CH4 emissions since emissions per kg of consumed dry matter and the percentage of gross energy lost as CH4 are higher for more efficient animals.
Collapse
Affiliation(s)
| | - Luana Lelis Souza
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, Brazil
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | | | | | | | | | - Renata Helena Branco
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, Brazil
| | | | | | - Lucia Galvão de Albuquerque
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | | |
Collapse
|
10
|
Hailemariam D, Manafiazar G, Basarab J, Stothard P, Miglior F, Plastow G, Wang Z. Comparative analyses of enteric methane emissions, dry matter intake, and milk somatic cell count in different residual feed intake categories of dairy cows. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2019-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study compared the different residual feed intake (RFI) categories of lactating Holsteins with respect to methane (CH4) emissions, dry matter intake (DMI, kg), milk somatic cell count (SCC, 103∙mL−1), and β-hydroxybutyrate (BHB, mmol∙L−1). The RFI was calculated in 131 lactating Holstein cows that were then categorized into −RFI (RFI < 0) vs. +RFI (RFI > 0) and low- [RFI < −0.5 standard deviation (SD)] vs. high-RFI (RFI > 0.5 SD) groups. Milk traits were recorded in 131 cows, whereas CH4 and carbon dioxide were measured in 83. Comparisons of −RFI vs. +RFI and low- vs. high-RFI showed 7.9% (22.3 ± 0.40 vs. 24.2 ± 0.39) and 12.8% (21.1 ± 0.40 vs. 24.2 ± 0.45) decrease (P < 0.05) in DMI of −RFI and low-RFI groups, respectively. Similarly, −RFI and low-RFI cows had lower (P < 0.05) CH4 (g∙d−1) by 9.7% (343.5 ± 11.1 vs. 380.4 ± 10.9) and 15.5% (332.5 ± 12.9 vs. 393.5 ± 12.6), respectively. Milk yield was not different (P > 0.05) in −RFI vs. +RFI and low vs. high comparisons. The −RFI and low-RFI cows had lower (P < 0.05) SCC in −RFI vs. +RFI and low-RFI vs. high-RFI comparisons. The BHB was lower (P < 0.05) in low-RFI compared with the high-RFI group. Low-RFI dairy cows consumed less feed, emitted less CH4 (g∙d−1), and had lower milk SCC and BHB without differing in milk yield.
Collapse
Affiliation(s)
- Dagnachew Hailemariam
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Ghader Manafiazar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - John Basarab
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Alberta Agriculture and Forestry, Lacombe Research Centre, 6000 C&E Trail, Lacombe, AB T4L 1W1, Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Filippo Miglior
- CGIL Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
11
|
Herd RM, Arthur PF, Hegarty RS, Bird-Gardiner T, Donoghue KA, Velazco JI. Predicting metabolisable energy intake by free-ranging cattle using multiple short-term breath samples and applied to a pasture case-study. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Research into improving feed efficiency by ruminant animals grazing pastures has historically been restrained by an inability to measure feed intake by large numbers of individual animals. Recent advances in portable breath measurement technology could be useful for this purpose but methodologies need to be developed.
Aims
To evaluate predictive models for metabolisable energy intake (MEI) by free-ranging cattle using multiple short-term breath samples and then apply these to predict MEI by free-ranging cattle in a historic grazing experiment with cattle genetically divergent for residual feed intake (feed efficiency).
Methods
Predictive models for MEI were developed using bodyweight (BW) data, and carbon dioxide production rate (CPR) and methane production rate (MPR) from multiple short-term breath measurements, from an experiment with long-fed Angus steers on a grain-based diet, and an experiment with short-fed Angus heifers on a roughage diet. Heat production was calculated using CPR and MPR. Energy retained (ER) in body tissue gain by steers was calculated from BW, ADG, initial and final subcutaneous fat depths, and for both groups using feeding-standards equations.
Key results
Metabolic mid-test BW (MBW) explained 49 and 47% of the variation in MEI in the steer and heifer experiment, respectively, and for the steers adding ADG and then subcutaneous fat gain resulted in the models accounting for 60 and then 65% of the variation in MEI. In the steer experiment, MBW with CPR explained 57% of the variation in MEI, and including MPR did not account for any additional variation. In the heifer experiment, MBW with CPR explained 50%, and with MPR accounted for 52% of the variation in MEI. Heat production plus ER explained 60, 35 and 85% of the variation in MEI in the steer and the heifer experiments, and in the pooled data from both experiments, respectively.
Conclusions
Multiple short-term breath measurements, together simple BW data, can be used to predict MEI by free-ranging cattle in studies in which animals do not have feed-intake or ADG recorded.
Implications
This methodology can be used for research into improving feed efficiency by farm animals grazing pastures.
Collapse
|
12
|
Alvarenga FAP, Bansi H, Dobos RC, Austin KL, Donaldson AJ, Woodgate RT, Greenwood PL. Performance of Angus weaner heifers varying in residual feed intake-feedlot estimated breeding values grazing severely drought-affected pasture. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Beef industry productivity and profitability would be enhanced by improved efficiency at pasture. Our research is evaluating performance at pasture of Angus heifers divergent in estimated breeding values for residual feed intake determined from feedlot data (RFI-f-EBV) under a range of grazing conditions.
Aims
To determine whether Low- and High-RFI-f-EBV cattle differ in their growth response when pasture quality and availability become limiting to performance.
Methods
Eight-month-old heifers (n = 40) weaned at 6 months of age grazed within two replicates of 20, each with 10 low feedlot-efficiency (High-RFI-f-EBV) and 10 high feedlot-efficiency (Low-RFI-f-EBV) heifers. Each replicate grazed each of eight 1.25-ha paddocks comprising severely drought-affected, low-quality (mean dry-matter (DM) digestibility 44.1%, crude protein 7.3% DM, and 6.1 MJ metabolisable energy/kg DM) mixed perennial and annual native temperate grasses at 7-day intervals during repeated 28-day cycles, with Phase 1 with 2834 kg DM/ha and Phase 2 with 1890 kg DM/ha mean starting biomass. Heifers were yard-weighed weekly on nine occasions during the 8-week study.
Key results
During Phase 1 of grazing, the heifers gained 6.2 kg liveweight (LW) and during Phase 2 of grazing they lost 10 kg LW on average. Differences in LW between the RFI-f-EBV groups were not evident at the start or end of the study. However, over the 56 days of study, average daily change in LW calculated from the difference between starting and final LW was higher for Low-RFI-f-EBV heifers than for High-RFI-f-EBV heifers (–33 vs –127 g/day, s.e.m. = 41 g/day, P = 0.026). A similar result was evident when average daily LW change was determined from regression of LW on the day of study (–6 vs –96 g/day, s.e.m. = 41 g/day, P = 0.033). No significant interactions between grazing Phase and RFI-EBV group were evident for the growth responses.
Conclusions
Higher feedlot-efficiency (Low-RFI-f-EBV) weaner heifers maintained LW somewhat better than lower feedlot-efficiency (High-RFI-f-EBV) heifers, as the nutritional availability at pasture became more limiting.
Implications
Low-RFI-f-EBV weaner heifers may be more nutritionally resilient than are High-RFI-f-EBV heifers under drought conditions and, hence, may require less supplementary feed to maintain growth performance.
Collapse
|
13
|
de Lima AO, Koltes JE, Diniz WJS, de Oliveira PSN, Cesar ASM, Tizioto PC, Afonso J, de Souza MM, Petrini J, Rocha MIP, Cardoso TF, Neto AZ, Coutinho LL, Mourão GB, Regitano LCA. Potential Biomarkers for Feed Efficiency-Related Traits in Nelore Cattle Identified by Co-expression Network and Integrative Genomics Analyses. Front Genet 2020; 11:189. [PMID: 32194642 PMCID: PMC7064723 DOI: 10.3389/fgene.2020.00189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Feed efficiency helps to reduce environmental impacts from livestock production, improving beef cattle profitability. We identified potential biomarkers (hub genes) for feed efficiency, by applying co-expression analysis in Longissimus thoracis RNA-Seq data from 180 Nelore steers. Six co-expression modules were associated with six feed efficiency-related traits (p-value ≤ 0.05). Within these modules, 391 hub genes were enriched for pathways as protein synthesis, muscle growth, and immune response. Trait-associated transcription factors (TFs) ELF1, ELK3, ETS1, FLI1, and TCF4, were identified with binding sites in at least one hub gene. Gene expression of CCDC80, FBLN5, SERPINF1, and OGN was associated with multiple feed efficiency-related traits (FDR ≤ 0.05) and were previously related to glucose homeostasis, oxidative stress, fat mass, and osteoblastogenesis, respectively. Potential regulatory elements were identified, integrating the hub genes with previous studies from our research group, such as the putative cis-regulatory elements (eQTLs) inferred as affecting the PCDH18 and SPARCL1 hub genes related to immune system and adipogenesis, respectively. Therefore, our analyses contribute to a better understanding of the biological mechanisms underlying feed efficiency in bovine and the hub genes disclosed can be used as biomarkers for feed efficiency-related traits in Nelore cattle.
Collapse
Affiliation(s)
- Andressa O de Lima
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Wellison J S Diniz
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | | | - Aline S M Cesar
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Juliana Afonso
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Marcela M de Souza
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Juliana Petrini
- Exact Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - Marina I P Rocha
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Tainã F Cardoso
- Embrapa Pecuária Sudeste, Empresa Brazileira de Pesquisa Agropecuária, São Carlos, Brazil
| | - Adhemar Zerlotini Neto
- Embrapa Informática Agropecuária, Empresa Brazileira de Pesquisa Agropecuária, Campinas, Brazil
| | - Luiz L Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Gerson B Mourão
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Luciana C A Regitano
- Embrapa Pecuária Sudeste, Empresa Brazileira de Pesquisa Agropecuária, São Carlos, Brazil
| |
Collapse
|
14
|
Dini Y, Cajarville C, Gere JI, Fernandez S, Fraga M, Pravia MI, Navajas EA, Ciganda VS. Association between residual feed intake and enteric methane emissions in Hereford steers. Transl Anim Sci 2018; 3:239-246. [PMID: 32704795 PMCID: PMC7200529 DOI: 10.1093/tas/txy111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 01/09/2023] Open
Abstract
The objective of this study was to quantify the emissions of enteric CH4 from growing Hereford steers raised under feedlot conditions based on contrasting levels of residual feed intake (RFI). A repeated measurements experiment was conducted over 20 d to determine CH4 production from two groups of nine Hereford steers, with contrasting RFI values (mean ± SD): low RFI (LRFI group; −0.78 ± 0.22 kg DMI/d) vs. high RFI (HRFI group; 0.83 ± 0.34 kg DMI/d). Steers were selected from a larger contemporary population in which the RFI was evaluated. Steers were maintained under confined conditions with ad libitum access to water and feed, comprising a total mixed ration of 55% sorghum silage, 21% barley silage, 21% corn grain, and 3% protein–mineral–vitamin–premix, provided twice a day. Before the beginning of CH4 measurements, the live weight of both groups of animals was determined, which on average (±SEM) was 357.0 ± 5.11 and 334.0 ± 10.17 kg in the LRFI and HRFI groups, respectively. Methane emission (g/d) was measured on each animal with the sulfur hexafluoride (SF6) tracer technique, during two consecutive periods of 5 d. Individual daily intake and feeding behavior characteristics were measured using a GrowSafe automated feeding system (Model 6000, GrowSafe Systems Ltd, Airdrie, Alberta, Canada). Methanogens in the ruminal content were quantified using quantitative polymerase chain reaction with primers targeting the mcrA gene. Methane emission was near 27% lower in animals with LRFI when expressed in absolute terms (g/d; 26.8%; P = 0.009), by unit of dry matter intake (g CH4/kg; 27.9%, P = 0.021), or as % of gross energy intake (26.7%; P = 0.027). These differences could not be explained by differences in amount of total of methanogens (average = 9.82 log10 units; P = 0.857). However, there were some differences in animal feeding behavior that could explain these differences (e.g., LRFI animals tended to spend less time in feeders). Our results suggest that, in Hereford steers, the selection by RFI values is a promising mitigation strategy for the reduction of the emission of enteric CH4.
Collapse
Affiliation(s)
- Yoana Dini
- Departamento de Nutrición Animal, Facultad de Veterinaria, Universidad de la República, San José, Uruguay
| | - Cecilia Cajarville
- Departamento de Nutrición Animal, Facultad de Veterinaria, Universidad de la República, San José, Uruguay
| | - José I Gere
- UIDI, Facultad Regional Buenos Aires, Universidad Tecnológica Nacional. Medrano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sofía Fernandez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Martín Fraga
- Instituto Nacional de Investigación Agropecuaria, Plataforma de salud animal, Estación Experimental La Estanzuela, Colonia, Uruguay
| | - Maria Isabel Pravia
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental Las Brujas, Las Piedras, Canelones, Uruguay
| | - Elly Ana Navajas
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental Las Brujas, Las Piedras, Canelones, Uruguay
| | - Verónica S Ciganda
- Instituto Nacional de Investigación Agropecuaria, Programa de Producción y Sustentabilidad Ambiental, Estación Experimental La Estanzuela, Colonia, Uruguay
| |
Collapse
|
15
|
Dini Y, Gere JI, Cajarville C, Ciganda VS. Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in South America. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enteric methane (CH4) emissions are directly related to the quantity and type of feed intake. Existing mitigation strategies, for example, the addition of legumes to grass-based diets and increased use of grains, have been thoroughly researched and applied in different production systems. In this paper, we propose a need to expand the capacity to mitigate enteric CH4 emissions in cattle under grazing conditions. The objective of this paper was to contribute to evaluate a mitigation strategy under grazing conditions of using contrasting levels of pasture quality. The study was performed with 20 heifers twice during the year: winter and spring. Each season, the study employed a crossover design with two treatments and two 5-day measurement periods. The treatments were two pastures with different nutritional values, including a pasture with a low quality (70% of neutral detergent fibre, 1% of ether extract, 8% of non-fibre carbohydrates), 9% of crude protein, 35% of dry matter digestibility and a pasture with a high quality (42% neutral detergent fibre, 1.3% ether extract, 24% non-fibre carbohydrates, 21% crude protein and 63% dry matter digestibility). Enteric CH4 emissions were measured with sulfur hexafluoride tracer technique. The dry matter intake (kg/day) was measured indirectly using titanium dioxide as an external marker. CH4 emissions from animals grazing the high-quality pasture were 14% lower expressed as % of gross energy intake, and 11% lower expressed by unit of dry matter intake (g CH4/kg). These results quantitative showed the alternative to mitigate CH4 emissions from grazing bovines exclusively through the improvement of the forage quality offered.
Collapse
|