1
|
Bibliometric Mapping of Research on Life Cycle Assessment of Olive Oil Supply Chain. SUSTAINABILITY 2022. [DOI: 10.3390/su14073747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The olive oil supply chain and even its individual stages have been extensively investigated through life cycle assessment (LCA) in recent decades. Most practices of the olive oil supply chain have been associated with negative environmental effects, such as soil degradation, carbon dioxide emissions, air and ground pollution, and depletion of groundwater. The current work aimed to perform a bibliometric analysis, through a science mapping approach, coupled with a review on the life cycle assessment (LCA) studies of the olive oil sector, with relevance to the environmental impacts of agricultural and industrial practices of this food sector. A total of 110 documents published in 2008–2021 were analyzed and discussed. More than 78% of documents were released from 2015. The main Scopus categories relating to the topic analyzed were environmental sciences (25%), energy (18%), and engineering (17%). The most productive countries were Italy, Spain, and Greece. The cluster analysis identified three main research topics related to the “agricultural phase”, “oil extraction”, and “waste management and by-product valorization”. Most of the recent publications focused on the application of LCA to evaluate the environmental impact of innovative agricultural practices, sustainable control of parasites and weeds, wastes, and by-products valorization within a circular economy.
Collapse
|
2
|
Assessment of Key Feeding Technologies and Land Use in Dairy Sheep Farms in Spain. LAND 2022. [DOI: 10.3390/land11020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Familiar mixed dairy sheep farm is the most widespread system in the Mediterranean basin, in Latin America and in developing countries (85%). There is a strong lack of technological adoption in packages of feeding and land use in small-scale farms. To increase competitiveness, it would be of great interest to deepen the knowledge of how innovation was selected, adopted, and spread. The objective of this research was to select strategic feeding and land use technologies in familiar mixed dairy sheep systems and later assess dairy sheep farms in Spain. This objective was assessed by combining qualitative and quantitative methodologies. In the first stage, with the aim to identify and select the appropriate technologies, a panel of 107 experts in dairy sheep production was used. A questionnaire was applied to all of them with successive rounds using Delphi methodology. Later, these technologies were grouped by principal components analysis (PCA) and cluster analysis (CA). In a second stage the technological results from a random sample of 157 farms in the Center of Spain were collected. The technologies selected were linked to the technological adoption level of the farms in Castilla la Mancha by a multiple regression model. Ten technologies were selected by the 107 experts. Four factors were retained by PCA that explained at 67.11% of variance. The first factor is related to feeding strategies, the second to land use for livestock production, the third to efficient management of land resources or ecoefficiency and the fourth to by-products use. The expert evaluation was grouped in three clusters using the Ward’s method and the squared Euclidean distance measure, where the second showed higher values in the adoption level of each technology. The multiple regression model explained the relationship between the technologies and the technological level of the farms (R2 73.53%). The five technologies selected were: use of unifeed (1), supplemental feeding (5), grazing (6), raw materials production (7) and sustainable use of water and soil (10). These ten technologies identified can be directly extended to small-scale dairy farms from other countries in the Mediterranean basin and Latin America. This technological selection was supported from the broad and diverse panel of experts used. Besides, five technologies identified by the quantitative model will be able to be taken into account for the development of public innovation policies. They are direct technologies and easy to apply on the farm and seeking increased viability through innovation vs. intensification.
Collapse
|
3
|
Kronqvist C, Kongmanila D, Wredle E. Effects of Replacing Grass with Foliage on Growth Rate and Feed Intake in Goats-A Systematic Review and Meta-Analysis. Animals (Basel) 2021; 11:3163. [PMID: 34827895 PMCID: PMC8614473 DOI: 10.3390/ani11113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Small ruminants such as goats have a higher preference for browse species than cattle and sheep. In a meta-analysis of 42 papers describing 117 experimental treatments found by a search performed in June 2021 in PubMed and Web of Knowledge, we examined the general effect of including foliage in the diet of goats, replacing grasses, on dry matter intake and average daily weight gain. The inclusion requirement for a paper was that it described a controlled trial with a control diet of grass and with grass replaced by foliage in the experimental diet. Publication bias was estimated by calculating the Fail-safe n. Random effects analyses were conducted, using effect size calculated as Hedges' d. The results showed that inclusion of foliage increased feed intake (Hedges' d = 1.350, SE = 0.388) and average daily weight gain (Hedges' d = 1.417, SE = 0.444) compared with a grass-based control. The positive effect of foliage inclusion on dry matter intake was associated with lower neutral detergent fiber (NDF) and higher crude protein (CP) in the foliage than in the grass it replaced. The positive effect on average daily weight gain was associated with higher CP concentration in the foliage than in grass. Foliage inclusion level showed a quadratic relationship with dry matter intake, with maximum dry matter intake achieved at a level of 50-60%. There was wide variation between the studies reviewed, and this variation was not reduced by subgroup analysis based on different kinds of foliage. In conclusion, the addition of foliage to goat diets can increase feed intake and daily weight gain, as an effect of the dietary preferences of goats and of generally higher nutritional value in foliage species compared with natural/semi-natural grass species.
Collapse
Affiliation(s)
- Cecilia Kronqvist
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Daovy Kongmanila
- Faculty of Agriculture, National University of Laos, Vientiane P.O. Box 7322, Laos;
| | - Ewa Wredle
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| |
Collapse
|
4
|
Belanche A, Martín‐García I, Jiménez E, Jonsson NN, Yañez‐Ruiz DR. A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5541-5549. [PMID: 33709464 PMCID: PMC8451892 DOI: 10.1002/jsfa.11205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Meeting the energy and nitrogen (N) requirements of high-performing ruminants at the same time as avoiding digestive disturbances (i.e. rumen acidosis) is a key priority in ruminant nutrition. The present study evaluated the effect of a cereal ammoniation treatment, in which barley grains are combined with urea and enzymes that catalyze the conversion of urea to ammonia to optimize rumen function. Twelve rumen cannulated sheep were randomly divided into two groups and fed a diet containing 60% of ammoniated barley (AMM) or untreated barley supplemented with urea (CTL) to investigate the impact on rumen fermentation and feed utilization. RESULTS AMM had higher total N content and effective rumen degradable N than untreated barely. AMM sheep had a consistently higher rumen pH throughout the day (6.31 versus 6.03) and tended to have a lower post-prandial ammonia peak and higher acetate molar proportion (+5.1%) than CTL sheep. The rumen environment in AMM sheep favored the colonization and utilization of agro-industrial by-products (i.e. orange pulp) by the rumen microbes leading to a higher feed degradability. AMM sheep also had higher total tract apparent N digestibility (+21.7%) and urinary excretion of purine derivatives (+34%), suggesting a higher N uptake and microbial protein synthesis than CTL sheep. CONCLUSION The inclusion of AMM in the diet of ruminants represents a valid strategy for maintaining rumen pH within a physiological range and improving N utilization by the rumen microbes, which could have positive effects on the health and productivity of animals in intensive production systems. These findings warrant further studies under conventional farm conditions. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Nicholas N Jonsson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of GlasgowGlasgowUK
| | | |
Collapse
|
5
|
Dairy Farms and Life Cycle Assessment (LCA): The Allocation Criterion Useful to Estimate Undesirable Products. SUSTAINABILITY 2021. [DOI: 10.3390/su13084354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the life cycle assessment (LCA) principle was performed to estimate the environmental impact of three dairy farms that operate using different farming systems, namely, conventional (CON), organic (ORG), and high-quality (HQ) modes. In Italy, the typical style of high-quality (HQ) farming is commonly included in the conventional system but is more strictly regulated by the Decree of the Italian Ministry of Health N° 185/1991. Although the farms are not fully representative of each conduct, they showed intrinsic peculiarities, e.g., the cow-culling rate of each system. This rate requires a quantification as it may be related to loss of income. Allocation criteria were applied to attribute the quantities of pollutants to the co-products: wheat, involved in the congruence and number of cows culled, the latter being undesirable and therefore necessary to quantify. Analysis of variance (ANOVA) highlighted that the no-dairy products significantly mitigated (p < 0.05) some of the impacts’ categories. The allocation of culled cows decreased the impacts of the CON and particularly those of the ORG farms when the mass mode was adopted. HQ showed values similar to the results without allocation. Overall, the objective of identifying a “marker” of undesirable products, estimated by the culling rate, was partially achieved.
Collapse
|
6
|
Sustainability Assessment of Pasture-Based Dairy Sheep Systems: A Multidisciplinary and Multiscale Approach. SUSTAINABILITY 2021. [DOI: 10.3390/su13073994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article describes a novel methodological approach for the integrated sustainability assessment of pasture-based dairy sheep systems. Most studies on livestock system sustainability focus on animal production, farm profitability, and mitigation strategies of greenhouse gas emissions. However, recent research indicates that pasture-based livestock farming also contributes positively to rural areas, and the associated increase in plant diversity promotes ecosystem functioning and services in natural and managed grasslands. Likewise, little attention has focused on how pasture-based livestock systems affect soil carbon changes, biodiversity, and ecotoxicity. Furthermore, the quality and safety of food products, particularly sheep milk and cheese, and socioeconomic issues such as cultural heritage and consumer behavior are often neglected in livestock system sustainability assessments. To improve the analysis of sustainability and adaptation strategies of livestock systems, we suggest a holistic approach that integrates indicators from diverse disciplines with complementary methods and models capable of capturing the complexity of these systems at multiple scales. A multidisciplinary perspective generates new indicators to identify critical trade-offs and synergies related to the resilience of dairy sheep livestock systems. A multiscale approach provides insights on the effects of socioeconomic and environmental changes associated with current dairy sheep grazing systems across multiple scales. The combined approach will facilitate the development and progressive implementation of novel management strategies needed to adapt pasture-based dairy sheep farms to changing conditions under future socioeconomic and environmental scenarios.
Collapse
|
7
|
The role of the European small ruminant dairy sector in stabilising global temperatures: lessons from GWP* warming-equivalent emission metrics. J DAIRY RES 2021; 88:8-15. [PMID: 33663634 DOI: 10.1017/s0022029921000157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent calls advocate that a huge reduction in the consumption of animal products (including dairy) is essential to mitigate climate change and stabilise global warming below the 1.5 and 2°C targets. The Paris Agreement states that to stabilise temperatures we must reach a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases (GHG) in the second half of this century. Consequently, many countries have adopted overall GHG reduction targets (e.g. EU, at least 40% by 2030 compared to 1990). However, using conventional metric-equivalent emissions (CO2-e GWP100) as the basis to account for emissions does not result in capturing the effect on atmospheric warming of changing emission rates from short-lived GHG (e.g. methane: CH4), which are the main source of GHG emissions by small ruminants. This shortcoming could be solved by using warming-equivalent emissions (CO2-we, GWP*), which can accurately link annual GHG emission rates to its warming effect in the atmosphere. In our study, using this GWP* methodology and different modelling approaches, we first examined the historical (1990-2018) contribution of European dairy small ruminant systems to additional atmosphere warming levels and then studied different emission target scenarios for 2100. These scenarios allow us to envision the necessary reduction of GHG emissions from Europe's dairy small ruminants to achieve a stable impact on global temperatures, i.e. to be climatically neutral. Our analysis showed that, using this type of approach, the whole European sheep and goat dairy sector seems not to have contributed to additional warming in the period 1990-2018. Considering each subsector separately, increases in dairy goat production has led to some level of additional warming into the atmosphere, but these have been compensated by larger emission reductions in the dairy sheep sector. The estimations of warming for future scenarios suggest that to achieve climate neutrality, understood as not adding additional warming to the atmosphere, modest GHG reductions of sheep and goat GHG would be required (e.g. via feed additives). This reduction would be even lower if potential soil organic carbon (SOC) from associated pastures is considered.
Collapse
|
8
|
Effect of the Use of Tomato Pomace on Feeding and Performance of Lactating Goats. Animals (Basel) 2020; 10:ani10091574. [PMID: 32899422 PMCID: PMC7552255 DOI: 10.3390/ani10091574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Inclusion of agro-industrial wastes reduces animal feed costs. However, it is very important to assess the effect this can have on the health and physiological condition of animals, as well as on the production and quality of milk. Therefore, this study was proposed with the objective of evaluating these aspects and verifying the optimal dose to maximize the farmers’ economic margin without affecting animals or their production. Inclusion of 40% tomato pomace does not influence the physiological characteristics of animals, and in turn improves both milk production and composition. Therefore, it can be concluded that formulation of the goats’ diet including 40% tomato pomace is the best option for animal diet. Abstract The aim of this research was to evaluate the effect of including different levels of tomato pomace (TP) on performance, blood biochemical parameters, hormones, production and composition of milk, and economic analysis of Saanen goats reared in confinement. Sixteen multiparous goats (Saanen), 21 days in milk, were randomly distributed in two Latin square 4 × 4 (four periods and four treatments), according to the inclusion levels of dehydrated tomato pomace (0%, 20%, 40%, and 60%) in the diet. This inclusion resulted in differences in the intake of dry and organic matter, as well as ether extract, crude protein, water, neutral detergent fiber, and non-fibrous carbohydrates. The inclusion of 60% TP resulted in a significant decrease of body weight (−4.42 kg) in comparison with initial body weight, while the other three treatments did not affect or increase the animal body weight (between −0.05 and +3.07 kg). The addition of 20% and 40% of TP resulted in higher milk production (around 1.5 kg day−1) than in animals from a control (1.2 kg day−1) and 60% TP (1.04 kg day−1). This increase was approximately 28% in the animals with 40% of TP inclusion. Moreover, the addition of 20% or 40% TP also improved the milk quality, which presented a higher fat amount (4.37% and 4.63% in 20% TP and 40% TP animals, respectively) than in a control (3.7%) and animals feed with 60% TP (4.02%). The feed efficiency and feed conversion did not show differences between diets. Thyroid hormones (T3 and T4) were also significantly affected by the inclusion of TP in the diet. The diet with the highest level of TP (60%) had the lowest cost per kilo among the diets evaluated. However, the use of 40% TP in animal diet presented the highest milk production and intermediate production cost.
Collapse
|
9
|
Sabia E, Gauly M, Napolitano F, Serrapica F, Cifuni GF, Claps S. Dairy sheep carbon footprint and ReCiPe end-point study. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Effect of Feed Concentrate Intake on the Environmental Impact of Dairy Cows in an Alpine Mountain Region Including Soil Carbon Sequestration and Effect on Biodiversity. SUSTAINABILITY 2020. [DOI: 10.3390/su12052128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several studies on the environmental impacts of livestock enterprises are based on the application of life cycle assessments (LCA). In Alpine regions, soil carbon sequestration can play an important role in reducing environmental impacts. However, there is no official methodology to calculate this possible reduction. Biodiversity plays an important role in the Alpine environment and is affected by human activities, such as cattle farming. Our aim was to estimate the carbon footprint (CF) of four different dairy production systems (different in breeds and feeding intensity) by using the LCA approach. The present study included 44 dairy Alpine farms located in the autonomous province of Bolzano in northern Italy. Half of the farms (n = 22) kept Alpine Grey and the other half (n = 22) Brown Swiss cattle. Within breeds, the farms were divided by the amount of concentrated feed per cow and day into high concentrate (HC) and low concentrate (LC). This resulted in 11 Alpine Grey low concentrate (AGLC) farms feeding an average amount of 3.0 kg concentrated feed/cow/day and 11 Alpine Grey high concentrate (AGHC) farms with an average amount of 6.3 kg concentrated feed/cow/day. Eleven farms kept Brown Swiss cows with an average amount of 3.7 kg concentrated feed/cow/day (BSLC) and another 11 farms feeding on average 7.6 kg concentrated feed/cow/day (BSHC). CF for the four systems was estimated using the LCA approach. The functional unit was 1 kg of fat and protein corrected milk (FPCM). Furthermore, two methodologies have been applied to estimate soil carbon sequestration and effect on biodiversity. The system with the lowest environmental impact in terms of CF was BSHC (1.14 kg CO2-eq/kg of FPCM), while the most impactful system was the AGLC group (1.55 kg CO2-eq/kg of FPCM). Including the CF reduction due to soil carbon sequestered from grassland, it decreased differently for the two applied methods. For all four systems, the main factor for CF was enteric emission, while the main pollutant was biogenic CH4. Conversely, AGLC had the lowest impact when the damage to biodiversity was considered (damage score = 0.41/kg of FPCM, damage to ecosystem diversity = 1.78 E-07 species*yr/kg FPCM). In comparison, BSHC had the greatest impact in terms of damage to biodiversity (damage score = 0.56/kg of FPCM, damage to ecosystem diversity = 2.49 E-07 species*yr/kg FPCM). This study indicates the importance of including soil carbon sequestration from grasslands and effects on biodiversity when calculating the environmental performance of dairy farms.
Collapse
|
11
|
Horrillo A, Gaspar P, Escribano M. Organic Farming as a Strategy to Reduce Carbon Footprint in Dehesa Agroecosystems: A Case Study Comparing Different Livestock Products. Animals (Basel) 2020; 10:E162. [PMID: 31963570 PMCID: PMC7022606 DOI: 10.3390/ani10010162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/16/2022] Open
Abstract
This study employs life cycle assessment (LCA) for the calculation of the balance (emissions minus sequestration) of greenhouse gas emissions (GHG) in the organic livestock production systems of dehesas in the southwest region of Spain. European organic production standards regulate these systems. As well as calculating the system's emissions, this method also takes into account the soil carbon sequestration values. In this sense, the study of carbon sequestration in organic systems is of great interest from a legislation viewpoint. The results reveal that the farms producing meat cattle with calves sold at weaning age provide the highest levels of carbon footprint (16.27 kg of carbon dioxide equivalent (CO2eq)/kg of live weight), whereas the farms with the lowest levels of carbon emissions are montanera pig and semi-extensive dairy goat farms, i.e., 4.16 and 2.94 kg CO2eq/kg of live weight and 1.19 CO2eq/kg of fat and protein corrected milk (FPCM), respectively. Enteric fermentation represents 42.8% and 79.9% of the total emissions of ruminants' farms. However, in pig farms, the highest percentage of the emissions derives from manure management (36.5%-42.9%) and animal feed (31%-37.7%). The soil sequestration level has been seen to range between 419.7 and 576.4 kg CO2eq/ha/year, which represents a considerable compensation of carbon emissions. It should be noted that these systems cannot be compared with other more intensive systems in terms of product units and therefore, the carbon footprint values of dehesa organic systems must always be associated to the territory.
Collapse
Affiliation(s)
- Andrés Horrillo
- Department of Animal Production and Food Science, School of Agricultural Engineering, University of Extremadura, Avda. Adolfo Suarez, s/n, 06007 Badajoz, Spain;
| | - Paula Gaspar
- Department of Animal Production and Food Science, School of Agricultural Engineering, University of Extremadura, Avda. Adolfo Suarez, s/n, 06007 Badajoz, Spain;
| | - Miguel Escribano
- Department of Animal Production and Food Science, Faculty of Veterinary Medicine, University of Extremadura, Campus Universitario, 10003 Caceres, Spain;
| |
Collapse
|
12
|
Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review. SUSTAINABILITY 2019. [DOI: 10.3390/su11247224] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Managed temperate grasslands occupy 25% of the world, which is 70% of global agricultural land. These lands are an important source of food for the global population. This review paper examines the impacts of climate change on managed temperate grasslands and grassland-based livestock and effectiveness of adaptation and mitigation options and their interactions. The paper clarifies that moderately elevated atmospheric CO2 (eCO2) enhances photosynthesis, however it may be restiricted by variations in rainfall and temperature, shifts in plant’s growing seasons, and nutrient availability. Different responses of plant functional types and their photosynthetic pathways to the combined effects of climatic change may result in compositional changes in plant communities, while more research is required to clarify the specific responses. We have also considered how other interacting factors, such as a progressive nitrogen limitation (PNL) of soils under eCO2, may affect interactions of the animal and the environment and the associated production. In addition to observed and modelled declines in grasslands productivity, changes in forage quality are expected. The health and productivity of grassland-based livestock are expected to decline through direct and indirect effects from climate change. Livestock enterprises are also significant cause of increased global greenhouse gas (GHG) emissions (about 14.5%), so climate risk-management is partly to develop and apply effective mitigation measures. Overall, our finding indicates complex impact that will vary by region, with more negative than positive impacts. This means that both wins and losses for grassland managers can be expected in different circumstances, thus the analysis of climate change impact required with potential adaptations and mitigation strategies to be developed at local and regional levels.
Collapse
|
13
|
Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.02.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Gutiérrez-Peña R, Mena Y, Batalla I, Mancilla-Leytón JM. Carbon footprint of dairy goat production systems: A comparison of three contrasting grazing levels in the Sierra de Grazalema Natural Park (Southern Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:993-998. [PMID: 33395768 DOI: 10.1016/j.jenvman.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 06/12/2023]
Abstract
The main objective of this study was to analyze the carbon footprint (CF) of grazing dairy goat systems in a natural park according to their grazing level. A total of 16 representative grazing goat farms in southern Spain were selected and grouped into three farming systems: low productivity grazing farms (LPG), more intensified grazing farms (MIG) and high productivity grazing farms (HPG). Their CF was analyzed, including greenhouse gas emissions and soil C sequestration according to the farms' grazing level and milk productivity, taking into account different functional units (one kilogram of fat and protein corrected milk (FPCM) and one hectare) and milk correction. Results showed that all variables differed according to the milk correction applied as the values for cow's milk correction were 41% lower than for sheep's milk correction. Total emissions and contributions of soil carbon sequestration differed according to farming system group; LPG farms had higher total emissions than MIG and HPG farms, however total carbon sequestration was lower in the MIG farms than in the LPG and HPG farms. The CF values ranged from 2.36 to 1.76 kg CO2e kg-1 FPCM for sheep's milk correction and from 1.40 to 1.04 kg CO2e kg-1 FPCM for cow's milk correction. No differences were found between farming system groups in either of the two cases but when calculations took hectare of land as a functional unit, the contribution of MIG farms to the CF was 85% higher than LPG and HPG farms. Therefore it is important to take into account the functional unit used to calculate the CF by analyzing this indicator in a broader context, and including carbon sequestration by grazing livestock in the calculation. In order to reduce the CF of this type of system, it is advisable to make appropriate use of the natural resources and to reach an optimum level of milk productivity, high enough for pastoral livestock farming to be viable.
Collapse
Affiliation(s)
- Rosario Gutiérrez-Peña
- Institut de Recerca i Formació Agrària i Pesquera (IRFAP), Conselleria d'Agricultura, Medi Ambient i Territori, Govern de les Illes Balears, 07009, Palma, Mallorca, Spain
| | - Yolanda Mena
- Departamento de Ciencias Agroforestales, Universidad de Sevilla, Sevilla, 41013, Spain.
| | | | | |
Collapse
|
15
|
Gómez-Cortés P, Cívico A, de la Fuente MA, Núñez Sánchez N, Peña Blanco F, Martínez Marín AL. Effects of dietary concentrate composition and linseed oil supplementation on the milk fatty acid profile of goats. Animal 2018; 12:2310-2317. [PMID: 29528030 DOI: 10.1017/s1751731118000381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Milk fat composition can be modulated by the inclusion of lipid supplements in ruminant diets. An interaction between the lipid supplement and the forage to concentrate ratio or the type of forage in the rations may affect milk fat composition. However, little is known about the effects of the starch-to-non-forage NDF ratio in the concentrate and lipid supplementation of goat diets. The aim of this work was to determine the role of dietary carbohydrates in goats rations supplemented with linseed oil on animal performance and milk fatty acid (FA) profile. A total of 16 dairy goats were allocated to two simultaneous experiments (two treatments each), in a crossover design with four animals per treatment and two experimental periods of 25 days. In both experiments alfalfa hay was the sole forage and the forage to concentrate ratio (33:67) remained constant. The concentrate in experiment 1 consisted of barley, maize and soybean meal (concentrate rich in starch), whereas it included soybean hulls replacing 25% of barley and 25% maize in experiment 2 (concentrate rich in NDF). As a result, the starch-to-non-forage NDF ratio was 3.1 in experiment 1 and it decreased to 0.8 in experiment 2. Both concentrates were administered either alone or in combination with 30 g/day of linseed oil. Animal performance parameters were not affected by experimental treatments. In contrast, major changes were observed in milk FA profile due to lipid supplementation and the type of concentrate. Linseed oil significantly raised vaccenic and rumenic acids as well as α-linolenic acid and its biohydrogenation intermediates while decreased medium-chain saturated FA (12:0 to 16:0) in milk fat. Milk fat contents of odd and branched-chain FA and trans-10 18:1 responded differently to linseed oil supplementation according to the concentrate fed.
Collapse
Affiliation(s)
- P Gómez-Cortés
- 1Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM),Universidad Autónoma de Madrid,Nicolás Cabrera 9,28049 Madrid,Spain
| | - A Cívico
- 2Departamento de Producción Animal,Universidad de Córdoba,Ctra. Madrid-Cádiz km 396,14071 Córdoba,Spain
| | - M A de la Fuente
- 1Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM),Universidad Autónoma de Madrid,Nicolás Cabrera 9,28049 Madrid,Spain
| | - N Núñez Sánchez
- 2Departamento de Producción Animal,Universidad de Córdoba,Ctra. Madrid-Cádiz km 396,14071 Córdoba,Spain
| | - F Peña Blanco
- 2Departamento de Producción Animal,Universidad de Córdoba,Ctra. Madrid-Cádiz km 396,14071 Córdoba,Spain
| | - A L Martínez Marín
- 2Departamento de Producción Animal,Universidad de Córdoba,Ctra. Madrid-Cádiz km 396,14071 Córdoba,Spain
| |
Collapse
|
16
|
Pardo G, Moral R, Del Prado A. SIMS WASTE-AD - A modelling framework for the environmental assessment of agricultural waste management strategies: Anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:806-817. [PMID: 27664767 DOI: 10.1016/j.scitotenv.2016.09.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
On-farm anaerobic digestion (AD) has been promoted due to its improved environmental performance, which is based on a number of life cycle assessments (LCA). However, the influence of site-specific conditions and practices on AD performance is rarely captured in LCA studies and the effects on C and N cycles are often overlooked. In this paper, a new model for AD (SIMSWASTE-AD) is described in full and tested against a selection of available measured data. Good agreement between modelled and measured values was obtained, reflecting the model capability to predict biogas production (r2=0.84) and N mineralization (r2=0.85) under a range of substrate mixtures and operational conditions. SIMSWASTE-AD was also used to simulate C and N flows and GHG emissions for a set of scenarios exploring different AD technology levels, feedstock mixtures and climate conditions. The importance of post-digestion emissions and its relationship with the AD performance have been stressed as crucial factors to reduce the net GHG emissions (-75%) but also to enhance digestate fertilizer potential (15%). Gas tight digestate storage with residual biogas collection is highly recommended (especially in temperate to warm climates), as well as those operational conditions that can improve the process efficiency on degrading VS (e.g. thermophilic range, longer hydraulic retention time). Beyond the effects on the manure management stage, SIMSWASTE-AD also aims to help account for potential effects of AD on other stages by providing the C and nutrient flows. While primarily designed to be applied within the SIMSDAIRY modelling framework, it can also interact with other models implemented in integrated approaches. Such system scope assessments are essential for stakeholders and policy makers in order to develop effective strategies for reducing GHG emissions and environmental issues in the agriculture sector.
Collapse
Affiliation(s)
- Guillermo Pardo
- Basque Centre for Climate Change (BC3), Edificio Sede N° 1, Planta 1ª, Parque Científico de UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain.
| | - Raúl Moral
- Miguel Hernandez University, EPS-Orihuela, Ctra Beniel Km 3.2, 03312 Orihuela, Spain
| | - Agustín Del Prado
- Basque Centre for Climate Change (BC3), Edificio Sede N° 1, Planta 1ª, Parque Científico de UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|