1
|
Ge L, Kang J, Dong X, Luan D, Su G, Li G, Zhang Y, Quan F. Myostatin site-directed mutation and simultaneous PPARγ site-directed knockin in bovine genome. J Cell Physiol 2020; 236:2592-2605. [PMID: 32841375 DOI: 10.1002/jcp.30017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Most studies on the acquisition of advantageous traits in transgenic animals only focus on monogenic traits. In practical applications, transgenic animals need to possess multiple advantages. Therefore, multiple genes need to be edited simultaneously. CRISPR/Cas9 technology has been widely used in many research fields. However, few studies on endogenous gene mutation and simultaneous exogenous gene insertion performed via CRISPR/Cas9 technology are available. In this study, the CRISPR/Cas9 technology was used to achieve myostatin (MSTN) point mutation and simultaneous peroxisome proliferator-activated receptor-γ (PPARγ) site-directed knockin in the bovine genome. The feasibility of this gene editing strategy was verified on a myoblast model. The same gene editing strategy was used to construct a mutant myoblast model with MSTN mutation and simultaneous PPARγ knockin. Quantitative reverse-transcription polymerase chain reaction, immunofluorescence staining, and western blot analyses were used to detect the expression levels of MSTN and PPARγ in the mutant myoblast. Results showed that this strategy can inhibit the expression of MSTN and promote the expression of PPARγ. The cell counting kit-8 cell proliferation analysis, 5-ethynyl-2'-deoxyuridine cell proliferation analysis, myotube fusion index statistics, oil red O staining, and triglyceride content detection revealed that the proliferation, myogenic differentiation, and adipogenic transdifferentiation abilities of the mutant myoblasts were higher than those of the wild myoblasts. Finally, transgenic bovine embryos were obtained via somatic cell nuclear transfer. This study provides a breeding material and technical strategy to breed high-quality bovine and a gene editing method to realize the mutation of endogenous genes and simultaneous insertion of exogenous genes in genomes.
Collapse
Affiliation(s)
- Luxing Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangchen Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Deji Luan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Zheng HY, Yang CY, Yu NQ, Huang JX, Zheng W, Abdelnour SA, Shang JH. Effect of season on the in-vitro maturation and developmental competence of buffalo oocytes after somatic cell nuclear transfer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7729-7735. [PMID: 31904101 DOI: 10.1007/s11356-019-07470-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is a valuable technology tool with various uses in transgenic animals, regenerative medicine, and stem cell research. However, the efficiency of SCNT embryos appears to have poor developmental competency. Environmental issues may adversely affect SCNT embryos in buffalo. Thereafter, the present study aimed to explore the effect of season on the maturation of buffalo oocytes and subsequent developmental capability after parthenogenetic activation and SCNT in buffalo. Buffalo oocytes (n = 6353) were collected from local slaughterhouse at various seasons; spring (March-April), summer (May-August), autumn (September-November), and winter (December-January). A significant increase (p < 0.05) was recorded in the maturation rate (57.07%) at autumn compared with spring, summer, and winter (50.46, 50.93, and 50.66%, respectively). No significant differences were recorded in the fusion and the cleavage rates among all seasons. Blastocyst development rate was higher (p < 0.05) in autumn and winter (16.52 ± 8.45% and 15.98 ± 7.17%, respectively) than in spring and summer (9.47 ± 6.71% and 10.84 ± 6.58%, respectively) seasons. It could be concluded that the season had a significant effect on oocyte development competence which can be used for SCNT in buffalo.
Collapse
Affiliation(s)
- Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Nong-Qi Yu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Jia-Xiang Huang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Wei Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Sameh A Abdelnour
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
- College of Animal Science & Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China.
| |
Collapse
|
3
|
Qiu X, Xiao X, Ren A, Xiao M, Tian H, Ling W, Wang M, Li Y, Zhao Y. Effects of PXD101 and Embryo Aggregation on the In Vitro Development of Mouse Parthenogenetic Embryos. Cell Reprogram 2020; 22:14-21. [PMID: 32011921 DOI: 10.1089/cell.2019.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To improve the isolation efficiency of parthenogenetic embryonic stem cells (pESCs) in mice, it is necessary to optimize the method to increase in vitro developmental competence of mice parthenogenetic blastocysts. Therefore, this study aims to investigate an optimal method for the production of mouse parthenogenetic blastocysts and isolation of pESC colonies by comparing the effects of two methods: (1) the treatment of histone deacetylase inhibitor PXD101 before, during, or after parthenogenetic activation; (2) parthenogenetic embryo aggregation; and (3) their combination treatment. The results suggest that application of PXD101 treatment and embryo aggregation could both improve the development of mouse parthenogenetic blastocysts (50 nM PXD101 treated 4 hours during activation and further 4 hours after activation: 40.0% vs. 20.0%; p < 0.05; two-cell embryo aggregation: 38.3% vs. 20.0%; p < 0.05) and also enhance the isolation rate of pESC colonies (PXD101: 33.3% vs. 11.8%; p < 0.05; two-cell embryo aggregation: 36.4% vs. 11.8%; p < 0.05). The combination of their treatments had the higher rate of parthenogenetic blastocyst development (41.7%) and significantly higher rate of pESC colony isolation from parthenogenetic blastocysts (45.0%); therefore, we concluded that the combination of these two methods (50 nM PXD101 treated for 8 hours and then aggregated at two-cell stage with 0.25% pronase for 10 minutes in our self-made concave) is considered the optimal way for the in vitro development of parthenogenetic blastocysts and subsequent pESC colony isolation in mice, opening new opportunities for application of this combination method to improve the parthenogenetic embryo development in other species.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Xiong Xiao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Aoru Ren
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Min Xiao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Haoyu Tian
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Wenhui Ling
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Mingyu Wang
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Yuemin Li
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Yongju Zhao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| |
Collapse
|