1
|
Suárez-Vega A, Gutiérrez-Gil B, Toral PG, Frutos P, Loor JJ, Arranz JJ, Hervás G. Elucidating genes and gene networks linked to individual susceptibility to milk fat depression in dairy goats. Front Vet Sci 2022; 9:1037764. [PMID: 36590804 PMCID: PMC9798324 DOI: 10.3389/fvets.2022.1037764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary supplementation with marine lipids modulates ruminant milk composition toward a healthier fatty acid profile for consumers, but it also causes milk fat depression (MFD). Because the dairy goat industry is mainly oriented toward cheese manufacturing, MFD can elicit economic losses. There is large individual variation in animal susceptibility with goats more (RESPO+) or less (RESPO-) responsive to diet-induced MFD. Thus, we used RNA-Seq to examine gene expression profiles in mammary cells to elucidate mechanisms underlying MFD in goats and individual variation in the extent of diet-induced MFD. Differentially expression analyses (DEA) and weighted gene co-expression network analysis (WGCNA) of RNA-Seq data were used to study milk somatic cell transcriptome changes in goats consuming a diet supplemented with marine lipids. There were 45 differentially expressed genes (DEGs) between control (no-MFD, before diet-induced MFD) and MFD, and 18 between RESPO+ and RESPO-. Biological processes and pathways such as "RNA transcription" and "Chromatin modifying enzymes" were downregulated in MFD compared with controls. Regarding susceptibility to diet-induced MFD, we identified the "Triglyceride Biosynthesis" pathway upregulated in RESPO- goats. The WGCNA approach identified 9 significant functional modules related to milk fat production and one module to the fat yield decrease in diet-induced MFD. The onset of MFD in dairy goats is influenced by the downregulation of SREBF1, other transcription factors and chromatin-modifying enzymes. A list of DEGs between RESPO+ and RESPO- goats (e.g., DBI and GPD1), and a co-related gene network linked to the decrease in milk fat (ABCD3, FABP3, and PLIN2) was uncovered. Results suggest that alterations in fatty acid transport may play an important role in determining individual variation. These candidate genes should be further investigated.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo G. Toral
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Pilar Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain,*Correspondence: Juan-José Arranz
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| |
Collapse
|
2
|
Kikuyu grass in winter-spring time in small-scale dairy systems in the highlands of central Mexico in terms of cow performance and fatty acid profile of milk. Trop Anim Health Prod 2021; 53:225. [PMID: 33760981 DOI: 10.1007/s11250-021-02672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
The work herein reported closes the evaluation of the role of kikuyu grass in small-scale dairy systems in the highlands of Mexico. The objective was to compare the productive response of vacas lecheras en pastoreo continuo de kikuyu (Cenchrus clandestinus) with a sown frost-resistant tall fescue (Lolium arundinaceum) during the winter-spring dry season in dairy systems and determine the fatty acid profile of feeds and milk. An on-farm double cross-over experiment with three periods the 14 days each was undertaken with eight Holstein cows randomly assigned to treatments sequence. Treatments were daytime grazing for 8 h/d of a Cajun II endophyte free tall fescue pasture invaded by kikuyu grass (CJ) or a naturally invaded kikuyu grass pasture (KY), both associated with white clover (Trifolium repens) and annual ryegrass (Lolium multiflorum). Cows were supplemented in pens with 6.0 kg DM/cow/day with maize silage and 4.6 kg DM/cow/day of commercial concentrate. The fatty acid profiles of feeds and milk were determined by gas chromatography. There were differences (P<0.05) for net herbage accumulation and chemical composition between pastures, but not for in vitro digestibility or estimated metabolizable energy. In animal variables, protein content in milk was higher in KY (P<0.05). There were significant differences (P<0.05) among experimental periods for milk fat content and milk urea nitrogen with the highest values in Period 3. Pasture DM intake was lowest (P<0.05) in Period 3. In terms of fatty acid content, there were significant interactions (P<0.05) for vaccenic acid (C18:1t11) and linoleic acid (C18:2c9c12) with the highest values in Period 3. Linolenic acid (C18:3c9c12c15) was higher in milk when cows grazed KY and significantly higher (P<0.05) in Period 3. It is concluded that kikuyu pastures complemented with maize silage and concentrates in winter-spring perform as tall fescue pastures in the season of herbage scarcity. Milk from cows grazing kikuyu grass pastures complemented with maize silage and concentrates has a higher content of linolenic fatty acid and an atherogenic index favorable for human health.
Collapse
|
3
|
Hidalgo J, Cesarani A, Garcia A, Sumreddee P, Larios N, Mancin E, García JG, Núñez R, Ramírez R. Genetic Background and Inbreeding Depression in Romosinuano Cattle Breed in Mexico. Animals (Basel) 2021; 11:ani11020321. [PMID: 33525405 PMCID: PMC7911603 DOI: 10.3390/ani11020321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The objective of this study was to evaluate the genetic background and inbreeding depression in the Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH). Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals; 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. A 1% increase in inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to sustainable breeding programs for the Mexican Romosinuano cattle breed. Abstract The ultimate goal of genetic selection is to improve genetic progress by increasing favorable alleles in the population. However, with selection, homozygosity, and potentially harmful recessive alleles can accumulate, deteriorating genetic variability and hampering continued genetic progress. Such potential adverse side effects of selection are of particular interest in populations with a small effective population size like the Romosinuano beef cattle in Mexico. The objective of this study was to evaluate the genetic background and inbreeding depression in Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH) of different length classes. Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals born between 1950 and 2019, of which 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The reduction in effective population size implies the existence of genetic bottlenecks and the decline of genetic diversity due to the intensive use of few individuals as parents of the next generations. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The shortest and longest segments were 1.0 and 36.0 Mb long, respectively, reflecting ancient and recent inbreeding. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. The correlation between FPED and FGRM was −0.25, and the correlations among FPED and FROH of different length classes were low (from 0.16 to 0.31). The correlations between FGRM and FROH of different length classes were moderate (from 0.44 to 0.58), indicating better agreement. A 1% increase in population inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to more sustainable breeding programs for the Mexican Romosinuano beef cattle breed.
Collapse
Affiliation(s)
- Jorge Hidalgo
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Alberto Cesarani
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Andre Garcia
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Pattarapol Sumreddee
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani 12000, Thailand;
| | - Neon Larios
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| | - Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment-DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - José Guadalupe García
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
- Correspondence:
| | - Rafael Núñez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| | - Rodolfo Ramírez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| |
Collapse
|