Tang K, Wang M, Zhou D. Abatement potential and cost of agricultural greenhouse gases in Australian dryland farming system.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021;
28:21862-21873. [PMID:
33411274 DOI:
10.1007/s11356-020-11867-w]
[Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Evaluating the cost-effectiveness of GHG mitigation in the dryland agricultural sector is needed in terms of designing and implementing detailed and efficient mitigation programs, which is currently rarely covered by the literature. In this paper, we use a parametric directional distance approach to explore the farm-level abatement potential and cost (shadow value) of GHG for dryland farms in southwestern Australia. The study indicates that dryland agriculture could abate substantial GHG emissions and save agricultural inputs simultaneously. For the years 2006-2013, the average abatement potential ratios fluctuated between 17 and 33%, with a mean value of 21%. The mean shadow price of dryland agricultural GHG was $17.60 per tonne CO2-e in 2013 Australian dollars. In general, the analysis supports that reducing GHG in dryland agriculture is relatively cost-effective.
Collapse