Lee SL, Chu YC, Wu HJ, Chen CH. Template-assisted assembly: scanning tunneling microscopy study of solvent-dependent adlattices of alkyl-derivatized tetrathiafulvalene.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012;
28:382-388. [PMID:
22077481 DOI:
10.1021/la203148h]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The self-assembly of an adsorbate as a function of the strength of solvent-substrate adsorption is an important yet relatively unexplored subject. In this study, how the strength of solvent-substrate adsorption and solvent-solvent attraction affects the assembly of tetrakis(octadecylthio)tetrathiafulvalene (1) is scrutinized by scanning tunneling microscopy (STM). For solvents with strong intermolecular interactions and adsorption onto graphite, such as long n-alkanes (C(n)H(2n+2), n ≥ 13), STM reveals that the solvent molecules form lamellae which become a template to direct the assembly of 1 into one-dimensional arrays. The lengths of one of the unit cell vectors for the assemblies are increased and well correlated with the solvent sizes. In situ STM monitoring of 1 introduced onto graphite with preadsorbed n-tetradecane adlattices shows that the developed assemblies of 1 have striped features aligned parallel to the underlying template. In contrast, for solvents with weak adsorption, such as short n-alkanes (C(n)H(2n+2), n ≤ 12), toluene, and 1,2,4-trichlorobenzene, the adlattice structures of 1 are solvent-independent.
Collapse