1
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Zaremski M, Eremeev I, Garina E, Borisova O, Korolev B. Controlled synthesis of random, block-random and gradient styrene, methyl methacrylate and acrylonitrile Terpolymers via Nitroxide-mediated free radical polymerization. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1303-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Luef KP, Hoogenboom R, Schubert US, Wiesbrock F. Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. ADVANCES IN POLYMER SCIENCE = FORTSCHRITTE DER HOCHPOLYMEREN-FORSCHUNG 2015; 274:183-208. [PMID: 28239203 PMCID: PMC5321602 DOI: 10.1007/12_2015_340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unlike any other polymer class, the (co-)poly(2-oxazoline)s have tremendously benefited from the introduction of microwave reactors into chemical laboratories. This review focuses on the research activities in the area of (co-)poly(2-oxazoline)s prepared by microwave-assisted syntheses and, correspondingly, summarizes the current-state-of the-art of the microwave-assisted synthesis of 2-oxazoline monomers and the microwave-assisted ring-opening (co-)polymerization of 2-oxazolines as well as prominent examples of post-polymerization modification of (co-)poly(2-oxazoline)s. Special attention is attributed to the kinetic analysis of the microwave-assisted polymerization of 2-oxazolines and the discussion of non-thermal microwave effects.
Collapse
Affiliation(s)
- Klaus P. Luef
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
- Graz University of Technology, Institute for Chemistry and Technology of Materials, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Ulrich S. Schubert
- Laboratory for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Frank Wiesbrock
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| |
Collapse
|
4
|
Bouten PJM, Hertsen D, Vergaelen M, Monnery BD, Boerman MA, Goossens H, Catak S, van Hest JCM, Van Speybroeck V, Hoogenboom R. Accelerated living cationic ring-opening polymerization of a methyl ester functionalized 2-oxazoline monomer. Polym Chem 2015. [DOI: 10.1039/c4py01373e] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetic studies on the homo- and copolymerization of 2-methoxycarboxyethyl-2-oxazoline with 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline is discussed.
Collapse
Affiliation(s)
- Petra J. M. Bouten
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Dietmar Hertsen
- Center for Molecular Modeling (CMM)
- Ghent University
- Zwijnaarde 9052, 9000 Ghent
- Belgium
| | - Maarten Vergaelen
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Bryn D. Monnery
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Marcel A. Boerman
- Radboud University Nijmegen
- Institute for Molecules and Materials (IMM)
- 6525 AJ Nijmegen
- The Netherlands
| | - Hannelore Goossens
- Center for Molecular Modeling (CMM)
- Ghent University
- Zwijnaarde 9052, 9000 Ghent
- Belgium
| | - Saron Catak
- Center for Molecular Modeling (CMM)
- Ghent University
- Zwijnaarde 9052, 9000 Ghent
- Belgium
- Bogazici University
| | - Jan C. M. van Hest
- Radboud University Nijmegen
- Institute for Molecules and Materials (IMM)
- 6525 AJ Nijmegen
- The Netherlands
| | | | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
5
|
Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M. Poly(2-Oxazoline)s - Are They More Advantageous for Biomedical Applications Than Other Polymers? Macromol Rapid Commun 2012; 33:1648-62. [DOI: 10.1002/marc.201200453] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Kempe K, Becer CR, Schubert US. Microwave-Assisted Polymerizations: Recent Status and Future Perspectives. Macromolecules 2011. [DOI: 10.1021/ma2004794] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - C. Remzi Becer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| |
Collapse
|
7
|
One Decade of Microwave-Assisted Polymerizations: Quo vadis? Macromol Rapid Commun 2011; 32:254-88. [DOI: 10.1002/marc.201000539] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Indexed: 11/07/2022]
|
8
|
|
9
|
Roy D, Ullah A, Sumerlin BS. Rapid Block Copolymer Synthesis by Microwave-Assisted RAFT Polymerization. Macromolecules 2009. [DOI: 10.1021/ma901471k] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Debashish Roy
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
| | - Aman Ullah
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
- Dipartimento di Chimica e Chimica Industriale, Università di Genova and INSTM NIPLAB Centre, via Dodecaneso, 31, 16146 Genova, Italy
| | - Brent S. Sumerlin
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
| |
Collapse
|
10
|
Kumar D, Rudrawar S, Chakraborti AK. One-Pot Synthesis of 2-Substituted Benzoxazoles Directly from Carboxylic Acids. Aust J Chem 2008. [DOI: 10.1071/ch08193] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methanesulfonic acid has been found to be a highly effective catalyst for a convenient and one-pot synthesis of 2-substituted benzoxazoles by the reaction of 2-aminophenol with acid chlorides, generated in situ from carboxylic acids. Aryl, heteroaryl, and arylalkyl carboxylic acids provided excellent yields of the corresponding benzoxazoles. The reaction conditions were compatible with various substituents such as chloro, bromo, nitro, methoxy, cyclopentyloxy, phenoxy, thiophenoxy, and conjugated double bonds. Benzoxazole formation was found to be general with respect to substituted 2-aminophenols.
Collapse
|
11
|
Crawford R, Wanless EJ. Australian Colloid and Surface Science in 2007. Aust J Chem 2007. [DOI: 10.1071/ch07293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|