1
|
Courtney OR, Clouthier SM, Perrier S, Tanaka J, You W. Polymer Functionalization by RAFT Interchange. ACS Macro Lett 2023; 12:1306-1310. [PMID: 37708390 DOI: 10.1021/acsmacrolett.3c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Here, we report a simple approach for end group functionalization of linear polymers and graft copolymers via an interchange process of reversible addition-fragmentation chain transfer (RAFT) polymerization chain transfer agents (CTAs). The high functional group tolerance of the RAFT process allows a library of functionalities to be introduced. Moreover, this approach allows multiple functional groups to be installed simultaneously. Furthermore, as an alternative to end group analysis, we report the utility of the supernatant of the reaction mixture to determine the degree of functionalization.
Collapse
Affiliation(s)
- Owen Reid Courtney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Samantha Marie Clouthier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Joji Tanaka
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
2
|
Grishin ID. New Approaches to Atom Transfer Radical Polymerization and Their Realization in the Synthesis of Functional Polymers and Hybrid Macromolecular Structures. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Quek JY, Bright R, Dabare P, Vasilev K. ROS-responsive copolymer micelles for inflammation triggered delivery of ibuprofen. Colloids Surf B Biointerfaces 2022; 217:112590. [PMID: 35660744 DOI: 10.1016/j.colsurfb.2022.112590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for the treatment of pain, inflammation and fever. However, most NSAIDs are poorly water soluble, making it difficult to be administered thus high doses are required to reach the intended therapeutic effect, resulting in associated side effects. In this study, ROS-responsive micellar systems based on a block copolymer consisting of methylpropyl thioether (MTPA) and N'N-dimethylacrylamide was developed and loaded with ibuprofen (IBU). Using lipopolysaccharide activated RAW 264.7 macrophage like cells, we demonstrated that IBU was released from the copolymer, specifically in the presence of ROS. Interestingly, IBU encapsulated in ROS-responsive nanoparticles exhibited greater anti-inflammatory potency compared to its free form. The work highlights the potential of the ROS-responsive micellar system developed in this work to be used as carrier of NSAIDs for the treatment of relevant inflammatory conditions.
Collapse
Affiliation(s)
- Jing Yang Quek
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Richard Bright
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Prl Dabare
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia; College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| | - Krasimir Vasilev
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia; College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
4
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Bingham NM, Abousalman-Rezvani Z, Collins K, Roth PJ. Thiocarbonyl Chemistry in Polymer Science. Polym Chem 2022. [DOI: 10.1039/d2py00050d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organised by reaction type, this review highlights the unique reactivity of thiocarbonyl (C=S) groups with radicals, anions, nucleophiles, electrophiles, in pericyclic reactions, and in the presence of light. In the...
Collapse
|
6
|
Cortez-Lemus NA, Hermosillo-Ochoa E, Licea-Claverie Á. Effective End-Group Modification of Star-Shaped PNVCL from Xanthate to Trithiocarbonate Avoiding Chemical Crosslinking. Polymers (Basel) 2021; 13:3677. [PMID: 34771233 PMCID: PMC8588085 DOI: 10.3390/polym13213677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
In this study, six-arm star-shaped poly(N-vinylcaprolactam) (PNVCL) polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization were subjected to aminolysis reaction using hexylamine. Chemically crosslinked gels or highly end-functionalized star polymers can be obtained depending mainly on the type of solvent used during the transformation of the RAFT functional group. An increase in the viscosity of the solution was observed when the aminolysis was carried out in THF. In contrast, when the reaction was conducted in dichloromethane, chain-end thiol (PNVCL)6 star polymers could be obtained. Moreover, when purified (PNVCL-SH)6 star polymers are in contact with THF, the gelation occurs in just a few minutes, with an obvious increase in viscosity, to form physical gels that become chemically crosslinked gels after 12 h. Interestingly, when purified (PNVCL-SH)6 star polymers were stirred in distilled water, even at high aqueous solution concentration (40 mg/mL), there was no increase in the viscosity or gelation, and no evident gels were observed. The analysis of the hydrodynamic diameter (Dh) by dynamic light scattering (DLS) did not detect quantifiable change even after 4 days of stirring in water. On the other hand, the thiol groups in the (PNVCL-SH)6 star polymers were easily transformed into trithiocarbonate groups by addition of CS2 followed by benzyl bromide as demonstrated by UV-Vis spectroscopical analysis and GPC. After the modification, the (PNVCL)6 star polymers exhibit an intense yellow color typical of the absorption band of trithiocarbonate group at 308 nm. To further demonstrate the highly effective new trithiocarbonate end-functionality, the PNVCL polymers were successfully chain extended with N-isopropylacrylamide (NIPAM) to form six-arm star-shaped PNIPAM-b-PNVCL block copolymers. Moreover, the terminal thiol end-functionality in the (PNVCL-SH)6 star polymers was linked via disulfide bond formation to l-cysteine to further demonstrate its reactivity. Zeta potential analysis shows the pH-responsive behavior of these star polymers due to l-cysteine end-functionalization. By this using methodology and properly selecting the solvent, various environment-sensitive star polymers with different end-groups could be easily accessible.
Collapse
Affiliation(s)
- Norma A. Cortez-Lemus
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, A. P. 1166., Tijuana 22000, Mexico; (E.H.-O.); (Á.L.-C.)
| | | | | |
Collapse
|
7
|
Dallerba E, Massi M, Lowe AB. Rhenium(I)-tetrazolato functional luminescent polymers: Organic-inorganic hybrids via RAFT and post-polymerization modification. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Noy JM, Li Y, Smolan W, Roth PJ. Azide–para-Fluoro Substitution on Polymers: Multipurpose Precursors for Efficient Sequential Postpolymerization Modification. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Janina-Miriam Noy
- Centre for Advanced Macromolecular Design, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Yuman Li
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Willi Smolan
- Centre for Advanced Macromolecular Design, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Peter J. Roth
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| |
Collapse
|
9
|
Frayne SH, Northrop BH. Evaluating Nucleophile Byproduct Formation during Phosphine- and Amine-Promoted Thiol-Methyl Acrylate Reactions. J Org Chem 2018; 83:10370-10382. [PMID: 30132329 DOI: 10.1021/acs.joc.8b01471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The commonly accepted mechanism of nucleophile-initiated thiol-acrylate reactions requires the formation of undesired nucleophile byproducts. A systematic evaluation of the formation of such nucleophile byproducts has been carried out to understand the relationships between byproduct formation and nucleophile structure, stoichiometry, solvent, and reaction type. Three common nucleophiles for thiol-Michael reactions were investigated: dimethylphenylphosphine (DMPP), diethylamine (DEA), and hexylamine (HA). The formation of phosphonium ester and aza-Michael byproducts upon initiating a representative thiol-acrylate reaction between 1-hexanethiol and methyl acrylate at a range of initiator loading (0.01-10.0 equiv) and in different solvents (neat, DMSO, THF, and CHCl3) was determined by 1H NMR spectroscopy. The influence of reaction type was investigated by expanding from small molecule reactions to end group thiol-acrylate functionalization of PEG-diacrylate polymers and through investigations of polymer-polymer coupling reactions. Results indicate that the propensity of forming nucleophile byproducts varies with nucleophile type, solvent, and reaction type. Interestingly, for all but polymer-polymer ligation reactions, nucleophile byproduct formation is largely unobserved for nitrogen-centered nucleophiles DEA and HA and essentially nonexistent for the phorphorous-centered nucleophile DMPP. A rationale for the differences in nucleophile byproduct formation for DMPP, DEA, and HA is proposed and supported by experimental and computational analysis.
Collapse
Affiliation(s)
- Stephen H Frayne
- Department of Chemistry , Wesleyan University , Middletown , Connecticut 06459 , United States
| | - Brian H Northrop
- Department of Chemistry , Wesleyan University , Middletown , Connecticut 06459 , United States
| |
Collapse
|
10
|
Kulai I, Saffon-Merceron N, Voitenko Z, Mazières S, Destarac M. Alkyl Triarylstannanecarbodithioates: Synthesis, Crystal Structures, and Efficiency in RAFT Polymerization. Chemistry 2017; 23:16066-16077. [DOI: 10.1002/chem.201703412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/27/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ihor Kulai
- Laboratoire des IMRCP; Université Paul Sabatier, CNRS UMR 5623; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse, CNRS FR 2599; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Zoia Voitenko
- Department of Chemistry; Taras Shevchenko National University of Kyiv; 12, Lva Tolstoho street 01033 Kyiv Ukraine
| | - Stéphane Mazières
- Laboratoire des IMRCP; Université Paul Sabatier, CNRS UMR 5623; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Mathias Destarac
- Laboratoire des IMRCP; Université Paul Sabatier, CNRS UMR 5623; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| |
Collapse
|
11
|
Noy JM, Friedrich AK, Batten K, Bhebhe MN, Busatto N, Batchelor RR, Kristanti A, Pei Y, Roth PJ. Para-Fluoro Postpolymerization Chemistry of Poly(pentafluorobenzyl methacrylate): Modification with Amines, Thiols, and Carbonylthiolates. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01603] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Janina-Miriam Noy
- Centre
for Advanced Macromolecular Design (CAMD), University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Ann-Katrin Friedrich
- Centre
for Advanced Macromolecular Design (CAMD), University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Kyle Batten
- Nanochemistry
Research Institute (NRI) and Department of Chemistry, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Mathamsanqa N. Bhebhe
- Nanochemistry
Research Institute (NRI) and Department of Chemistry, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Nicolas Busatto
- Department
of Chemistry, University of Surrey - Guildford, Surrey GU2 7XH, United Kingdom
| | - Rhiannon R. Batchelor
- Centre
for Advanced Macromolecular Design (CAMD), University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Ariella Kristanti
- Centre
for Advanced Macromolecular Design (CAMD), University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Yiwen Pei
- Centre
for Advanced Macromolecular Design (CAMD), University of New South Wales, Kensington, Sydney, NSW 2052, Australia
- Nanochemistry
Research Institute (NRI) and Department of Chemistry, Curtin University, Bentley, Perth, WA 6102, Australia
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Peter J. Roth
- Centre
for Advanced Macromolecular Design (CAMD), University of New South Wales, Kensington, Sydney, NSW 2052, Australia
- Nanochemistry
Research Institute (NRI) and Department of Chemistry, Curtin University, Bentley, Perth, WA 6102, Australia
- Department
of Chemistry, University of Surrey - Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
12
|
Lunn DJ, Discekici EH, Read de Alaniz J, Gutekunst WR, Hawker CJ. Established and emerging strategies for polymer chain-end modification. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28575] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- David J. Lunn
- Materials Research Laboratory; University of California Santa Barbara; Santa Barbara California 93106
- Department of Chemistry; University of Oxford; Oxford OX1 3TA United Kingdom
| | - Emre H. Discekici
- Materials Research Laboratory; University of California Santa Barbara; Santa Barbara California 93106
- Department of Chemistry and Biochemistry; University of California Santa Barbara; Santa Barbara California 93106
| | - Javier Read de Alaniz
- Materials Research Laboratory; University of California Santa Barbara; Santa Barbara California 93106
- Department of Chemistry and Biochemistry; University of California Santa Barbara; Santa Barbara California 93106
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta Georgia 30332
| | - Craig J. Hawker
- Materials Research Laboratory; University of California Santa Barbara; Santa Barbara California 93106
- Department of Chemistry and Biochemistry; University of California Santa Barbara; Santa Barbara California 93106
- Materials Department; University of California Santa Barbara; Santa Barbara California 93106
| |
Collapse
|
13
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
14
|
Gadwal I, Eom T, Hwang J, Choe Y, Bang J, Khan A. Addressing the mid-point of polymer chains for multiple functionalization purposes through sequential thiol–epoxy ‘click’ and esterification reactions. RSC Adv 2017. [DOI: 10.1039/c7ra02702h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A synthetic strategy is devised for the preparation of mid-chain multifunctional polymers.
Collapse
Affiliation(s)
- Ikhlas Gadwal
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| | - Taejun Eom
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| | - JiHyeon Hwang
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| | - Youngson Choe
- Department of Chemical Engineering
- Pusan National University
- Pusan
- Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| |
Collapse
|
15
|
Liu R, Zhang P, Dai H. Synthesis of magnetic particles with well-defined living polymeric chains via combination of RAFT polymerization and thiol-ene click chemistry. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1113-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Abel BA, McCormick CL. “One-Pot” Aminolysis/Thiol–Maleimide End-Group Functionalization of RAFT Polymers: Identifying and Preventing Michael Addition Side Reactions. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01512] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brooks A. Abel
- Department of Polymer Science and
Engineering and ‡Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Charles L. McCormick
- Department of Polymer Science and
Engineering and ‡Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| |
Collapse
|
17
|
Jin G, Yu D, Guo Z, Yang D, Zhang H, Shen A, Yan J, Liang X. Preparation of glyco-silica materials via thiol-ene click chemistry for adsorption and separation. RSC Adv 2016. [DOI: 10.1039/c5ra24828k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A saccharide bonding method based on thiol-ene chemistry was developed and the resulting glyco-silica materials demonstrated great potential in separation science.
Collapse
Affiliation(s)
- Gaowa Jin
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian
- P. R. China
| | - Dongping Yu
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian
- P. R. China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian
- P. R. China
| | - Duo Yang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian
- P. R. China
| | - Hongtao Zhang
- Key Lab of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Aijin Shen
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian
- P. R. China
| | - Jingyu Yan
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian
- P. R. China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian
- P. R. China
| |
Collapse
|
18
|
Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2015; 116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindita Das
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
19
|
Atici LN, Demirel E, Tunca U, Hizal G, Durmaz H. Postfunctionalization of polyoxanorbornene backbone through the combination of bromination and nitroxide radical coupling reactions. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lale Nur Atici
- Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Erhan Demirel
- Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Umit Tunca
- Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Gurkan Hizal
- Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Hakan Durmaz
- Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| |
Collapse
|
20
|
Zhang Q, Voorhaar L, De Geest BG, Hoogenboom R. One-Pot Preparation of Inert Well-Defined Polymers by RAFT Polymerization and In Situ End Group Transformation. Macromol Rapid Commun 2015; 36:1177-83. [DOI: 10.1002/marc.201500075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Qilu Zhang
- Supramolecular Chemistry Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281-S4 9000 Ghent Belgium
| | - Lenny Voorhaar
- Supramolecular Chemistry Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281-S4 9000 Ghent Belgium
| | - Bruno G. De Geest
- Department of Pharmaceutics; Ghent University; Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281-S4 9000 Ghent Belgium
| |
Collapse
|
21
|
Bukhryakov KV, Desyatkin VG, O’Shea JP, Almahdali SR, Solovyeva V, Rodionov VO. Cooperative catalysis with block copolymer micelles: a combinatorial approach. ACS COMBINATORIAL SCIENCE 2015; 17:76-80. [PMID: 25544983 DOI: 10.1021/co5001713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A rapid approach to identifying complementary catalytic groups using combinations of functional polymers is presented. Amphiphilic polymers with "clickable" hydrophobic blocks were used to create a library of functional polymers, each bearing a single functionality. The polymers were combined in water, yielding mixed micelles. As the functional groups were colocalized in the hydrophobic microphase, they could act cooperatively, giving rise to new modes of catalysis. The multipolymer "clumps" were screened for catalytic activity, both in the presence and absence of metal ions. A number of catalyst candidates were identified across a wide range of model reaction types. One of the catalytic systems discovered was used to perform a number of preparative-scale syntheses. Our approach provides easy access to a range of enzyme-inspired cooperative catalysts.
Collapse
Affiliation(s)
- Konstantin V. Bukhryakov
- KAUST
Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Victor G. Desyatkin
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskye
Gory, 119992 Moscow, Russia
| | - John-Paul O’Shea
- KAUST
Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sarah R. Almahdali
- KAUST
Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vera Solovyeva
- KAUST
Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Valentin O. Rodionov
- KAUST
Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Affiliation(s)
- Graeme Moad
- CSIRO Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168, Australia
| |
Collapse
|
23
|
Quek JY, Liu X, Davis TP, Roth PJ, Lowe AB. RAFT-prepared α-difunctional poly(2-vinyl-4,4-dimethylazlactone)s and their derivatives: synthesis and effect of end-groups on aqueous inverse temperature solubility. Polym Chem 2015. [DOI: 10.1039/c4py01108b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five R-group di-functional dithiobenzoates have been prepared and used in the reversible addition–fragmentation chain transfer polymerization of 2-vinyl-4,4-dimethylazlactone.
Collapse
Affiliation(s)
- Jing Yang Quek
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Sydney
| | - Xuechao Liu
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Sydney
| | - Thomas P. Davis
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- Department of Chemistry
| | - Peter J. Roth
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Sydney
| | - Andrew B. Lowe
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Sydney
| |
Collapse
|
24
|
Postpolymerization synthesis of (bis)amide (co)polymers: Thermoresponsive behavior and self-association. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Efficient RAFT polymerization of N-(3-aminopropyl)methacrylamide hydrochloride using unprotected “clickable” chain transfer agents. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2014.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Roth PJ. Composing Well-Defined Stimulus-Responsive Materials Through Postpolymerization Modification Reactions. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Peter J. Roth
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
27
|
Xu Y, Xie J, Chen L, Gao H, Yuan C, Li C, Luo W, Zeng B, Dai L. Synthesis, characterization, and temperature-responsive behaviors of novel hybrid amphiphilic block copolymers containing polyhedral oligomeric silsesquioxane. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yiting Xu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials; Xiamen University; Xiamen Fujian 361005 China
| | - Jianjie Xie
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials; Xiamen University; Xiamen Fujian 361005 China
| | - Lingnan Chen
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials; Xiamen University; Xiamen Fujian 361005 China
| | - Hui Gao
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials; Xiamen University; Xiamen Fujian 361005 China
| | - Conghui Yuan
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials; Xiamen University; Xiamen Fujian 361005 China
| | - Cong Li
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials; Xiamen University; Xiamen Fujian 361005 China
| | - Weiang Luo
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials; Xiamen University; Xiamen Fujian 361005 China
| | - Birong Zeng
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials; Xiamen University; Xiamen Fujian 361005 China
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials; Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
28
|
Roth PJ, Davis TP, Lowe AB. Novel α,α-Bischolesteryl Functional (Co)Polymers: RAFT Radical Polymerization Synthesis and Preliminary Solution Characterization. Macromol Rapid Commun 2014; 35:813-20. [DOI: 10.1002/marc.201300889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/07/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Peter J. Roth
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Kensington, Sydney NSW 2052 Australia
| | - Thomas P. Davis
- Monash Institute of Pharmaceutical Sciences; Monash University; Parkville VIC 3052 Australia
- Department of Chemistry; University of Warwick; Gibbet Hill Coventry CV4 7AL UK
| | - Andrew B. Lowe
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Kensington, Sydney NSW 2052 Australia
| |
Collapse
|
29
|
Lowe AB. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem 2014. [DOI: 10.1039/c4py00339j] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This contribution serves as an update to a previous review (Polym. Chem.2010,1, 17–36) and highlights recent applications of thiol–ene ‘click’ chemistry as an efficient tool for both polymer/materials synthesis as well as modification.
Collapse
Affiliation(s)
- Andrew B. Lowe
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Kensington Sydney, Australia
| |
Collapse
|
30
|
Chang T, Lord MS, Bergmann B, Macmillan A, Stenzel MH. Size effects of self-assembled block copolymer spherical micelles and vesicles on cellular uptake in human colon carcinoma cells. J Mater Chem B 2014; 2:2883-2891. [DOI: 10.1039/c3tb21751e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Block copolymers, poly(oligo ethylene glycol methyl ether methacrylate)-block-poly(styrene), POEGMEMA-b-PS, with various block lengths were prepared via RAFT polymerization and subsequently self-assembled into various aggregates to investigate their uptake ability into cancer cells.
Collapse
Affiliation(s)
- Teddy Chang
- Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | - Björn Bergmann
- Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney, Australia
- Fraunhofer Institute for Chemical Technology ICT
- 76327 Karlsruhe, Germany
| | - Alex Macmillan
- Biomedical Imaging Facility
- University of New South Wales
- , Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney, Australia
| |
Collapse
|
31
|
Holley AC, Ray JG, Wan W, Savin DA, McCormick CL. Endolytic, pH-responsive HPMA-b-(L-Glu) copolymers synthesized via sequential aqueous RAFT and ring-opening polymerizations. Biomacromolecules 2013; 14:3793-9. [PMID: 24044682 DOI: 10.1021/bm401205y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A facile synthetic pathway for preparing block copolymers with pH-responsive L-glutamic acid segments for membrane disruption is reported. Aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization was first used to prepare biocompatible, nonimmunogenic poly[N-(2-hydroxypropyl)methacrylamide]. This macro chain transfer agent (CTA) was then converted into a macroinitiator via simultaneous aminolysis and thiol-ene Michael addition using the primary amine substituted N-(3-aminopropyl)methacrylamide. This macroinitiator was subsequently utilized in the ring-opening polymerization of the N-carboxyanhydride monomer of γ-benzyl-L-glutamate. After deprotection, the pH-dependent coil-to-helix transformations of the resulting HPMA-b-(L-Glu) copolymers were monitored via circular dichroism spectroscopy. HPMA segments confer water solubility and biocompatibility while the L-glutamic acid repeats provide reversible coil-to-helix transitions at endosomal pH values (~5-6). The endolytic properties of these novel [HPMA-b-(L-Glu)] copolymers and their potential as modular components in drug carrier constructs was demonstrated utilizing red blood cell hemolysis and fluorescein release from POPC vesicles.
Collapse
Affiliation(s)
- Andrew C Holley
- The Department of Polymer Science and Engineering and §The Department of Chemistry and Biochemistry, The University of Southern Mississippi , Hattiesburg, Mississippi 39406, United States
| | | | | | | | | |
Collapse
|
32
|
Quek JY, Zhu Y, Roth PJ, Davis TP, Lowe AB. RAFT Synthesis and Aqueous Solution Behavior of Novel pH- and Thermo-Responsive (Co)Polymers Derived from Reactive Poly(2-vinyl-4,4-dimethylazlactone) Scaffolds. Macromolecules 2013. [DOI: 10.1021/ma4013187] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jing Yang Quek
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Yicheng Zhu
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Peter J. Roth
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Thomas P. Davis
- Pharmaceutical
Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Andrew B. Lowe
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Roth PJ, Theato P. Thiol–Thiosulfonate Chemistry in Polymer Science: Simple Functionalization of Polymers via Disulfide Linkages. THIOL‐X CHEMISTRIES IN POLYMER AND MATERIALS SCIENCE 2013. [DOI: 10.1039/9781849736961-00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein we highlight the reaction of thiols with thiosulfonates yielding asymmetric disulfides. The chapter begins with an overview of the synthesis and reactivity of functional thiosulfonates and is followed by a review of polymeric thiosulfonates. We then emphasize the novel use of thiosulfonates as trapping/functionalization agents for macromolecular thiols obtained from parent (co)polymers prepared by reversible addition‐fragmentation chain transfer (RAFT) radical polymerization. We also note how such facile disulfide‐forming chemistries can be readily employed simultaneously with other highly efficient coupling chemistries with an emphasis on the concurrent reaction of activated esters with amines in the presence of thiosulfonates. Finally, we discuss the use of methyl disulfide (SSMe) functional/end‐modified (co)polymers as reagents for the formation of polymeric self‐assembled monolayers (polymer brushes) on metal surfaces such as nanoparticles and quantum dots.
Collapse
Affiliation(s)
- Peter J. Roth
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW 2052 Australia
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry University of Hamburg, Bundesstrasse 45, D‐20146 Hamburg Germany ‐hamburg.de
| |
Collapse
|
34
|
Zhu Y, Quek JY, Lowe AB, Roth PJ. Thermoresponsive (Co)polymers through Postpolymerization Modification of Poly(2-vinyl-4,4-dimethylazlactone). Macromolecules 2013. [DOI: 10.1021/ma401096r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yicheng Zhu
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Jing Yang Quek
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Andrew B. Lowe
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Peter J. Roth
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, UNSW Sydney NSW 2052, Australia
| |
Collapse
|
35
|
Eschweiler N, Keul H, Millaruelo M, Weberskirch R, Moeller M. Synthesis of α,ω-isocyanate telechelic polymethacrylate soft segments with activated ester side functionalities and their use for polyurethane synthesis. POLYM INT 2013. [DOI: 10.1002/pi.4535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nebia Eschweiler
- DWI an der RWTH Aachen e.V. and Institute of Technical and Macromolecular Chemistry; RWTH Aachen; Forckenbeckstraße 50 D-52056 Aachen Germany
| | - Helmut Keul
- DWI an der RWTH Aachen e.V. and Institute of Technical and Macromolecular Chemistry; RWTH Aachen; Forckenbeckstraße 50 D-52056 Aachen Germany
| | - Marta Millaruelo
- Bayer MaterialScience AG; BMS-CD-NB-NT, Kaiser-Wilhelm-Allee; Geb K13 D51368 Leverkusen Germany
| | - Ralf Weberskirch
- TU Dortmund, Fakultät Chemie; Otto-Hahn-Weg 6 D-44227 Dortmund Germany
| | - Martin Moeller
- DWI an der RWTH Aachen e.V. and Institute of Technical and Macromolecular Chemistry; RWTH Aachen; Forckenbeckstraße 50 D-52056 Aachen Germany
| |
Collapse
|
36
|
Zhang C, Yang Y, He J. Direct Transformation of Living Anionic Polymerization into RAFT-Based Polymerization. Macromolecules 2013. [DOI: 10.1021/ma4006457] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chao Zhang
- The State
Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuliang Yang
- The State
Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Junpo He
- The State
Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
37
|
Le D, Morandi G, Legoupy S, Pascual S, Montembault V, Fontaine L. Cyclobutenyl macromonomers: Synthetic strategies and ring-opening metathesis polymerization. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Moad G, Rizzardo E, Thang SH. Fundamentals of RAFT Polymerization. FUNDAMENTALS OF CONTROLLED/LIVING RADICAL POLYMERIZATION 2013. [DOI: 10.1039/9781849737425-00205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This chapter sets out to describe the fundamental aspects of radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Following a description of the mechanism we describe aspects of the kinetics of RAFT polymerization, how to select a RAFT agent to achieve optimal control over polymer molecular weight, composition and architecture, and how to avoid side reactions which might lead to retardation or inhibition.
Collapse
Affiliation(s)
- Graeme Moad
- CSIRO Materials Science and Engineering Bayview Ave, Clayton, Victoria 3168 Australia
| | - Ezio Rizzardo
- CSIRO Materials Science and Engineering Bayview Ave, Clayton, Victoria 3168 Australia
| | - San H. Thang
- CSIRO Materials Science and Engineering Bayview Ave, Clayton, Victoria 3168 Australia
| |
Collapse
|
39
|
Šubr V, Kostka L, Strohalm J, Etrych T, Ulbrich K. Synthesis of Well-Defined Semitelechelic Poly[N-(2-hydroxypropyl)methacrylamide] Polymers with Functional Group at the α-End of the Polymer Chain by RAFT Polymerization. Macromolecules 2013. [DOI: 10.1021/ma400042u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- V. Šubr
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i.,
Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - L. Kostka
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i.,
Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - J. Strohalm
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i.,
Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - T. Etrych
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i.,
Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - K. Ulbrich
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i.,
Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
40
|
Borguet YP, Tsarevsky NV. Controlled radical polymerization of a styrenic sulfonium monomer and post-polymerization modifications. Polym Chem 2013. [DOI: 10.1039/c2py21106h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
van Hensbergen JA, Burford RP, Lowe AB. Post-functionalization of a ROMP polymer backbone via radical thiol-ene coupling chemistry. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26433] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Günay KA, Theato P, Klok HA. Standing on the shoulders of Hermann Staudinger: Post-polymerization modification from past to present. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26333] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Quek JY, Roth PJ, Evans RA, Davis TP, Lowe AB. Reversible addition-fragmentation chain transfer synthesis of amidine-based, CO2-responsive homo and AB diblock (Co)polymers comprised of histamine and their gas-triggered self-assembly in water. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26397] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Bian Q, Xiao Y, Zhou C, Lang M. Synthesis, self-assembly, and pH-responsive behavior of (photo-crosslinked) star amphiphilic triblock copolymer. J Colloid Interface Sci 2012; 392:141-150. [PMID: 23127872 DOI: 10.1016/j.jcis.2012.08.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/10/2012] [Accepted: 08/18/2012] [Indexed: 10/27/2022]
Abstract
Conventional polymeric micelles employed as drug carriers suffer from the drawback of disaggregation when diluted into body fluids, giving rise to premature release of drugs. In this work, cinnamate was chosen as a crosslinker to overcome this issue and regulate pH response. A series of photo-crosslinkable star amphiphilic triblock copolymers, star poly(ε-caprolactone)-b-poly(2-cinnamoyloxyethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (SPCL-b-PCEMA-b-PDMAEMA), were prepared by combination of stepwise reversible addition-fragment chain transfer (RAFT) polymerization and carbodiimide-mediated coupling reaction. These star amphiphilic copolymers could self-assemble into core-shell-corona micelles. Facile photo crosslinking of the micelles was carried out via UV irradiation. The crosslinked micelles showed an improved stability determined by critical micelle concentration (CMC). The degree of photo crosslinking was easily regulated by tuning UV irradiation time, and the hydrodynamic diameters (D(h)) decreased with increasing degree of photo crosslinking. The pH responses of micelles were investigated by dynamic light scattering (DLS), indicating pH-induced swelling-shrinking behavior. For photo-crosslinked micelle, its capability of swelling-shrinking weakened with increasing crosslinking degree, suggesting that pH response was controlled by crosslinking density. This novel photo-crosslinked micelle system with adjustable pH response was expected to have potential as drug carriers for controlled release.
Collapse
Affiliation(s)
- Qingqing Bian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Chen Zhou
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
45
|
Hornung CH, Postma A, Saubern S, Chiefari J. A Continuous Flow Process for the Radical Induced End Group Removal of RAFT Polymers. MACROMOL REACT ENG 2012. [DOI: 10.1002/mren.201200007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Bian Q, Xiao Y, Lang M. Thermoresponsive biotinylated star amphiphilic block copolymer: Synthesis, self-assembly, and specific target recognition. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.02.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Chua GBH, Roth PJ, Duong HTT, Davis TP, Lowe AB. Synthesis and Thermoresponsive Solution Properties of Poly[oligo(ethylene glycol) (meth)acrylamide]s: Biocompatible PEG Analogues. Macromolecules 2012. [DOI: 10.1021/ma202700y] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Giles B. H. Chua
- Centre for Advanced Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Kensington, Sydney, New South Wales
2052, Australia
| | - Peter J. Roth
- Centre for Advanced Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Kensington, Sydney, New South Wales
2052, Australia
| | - Hien T. T. Duong
- Centre for Advanced Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Kensington, Sydney, New South Wales
2052, Australia
| | - Thomas P. Davis
- Centre for Advanced Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Kensington, Sydney, New South Wales
2052, Australia
| | - Andrew B. Lowe
- Centre for Advanced Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Kensington, Sydney, New South Wales
2052, Australia
| |
Collapse
|
48
|
Yhaya F, Binauld S, Callari M, Stenzel MH. One-Pot Endgroup-Modification of Hydrophobic RAFT Polymers with Cyclodextrin by Thiol-ene Chemistry and the Subsequent Formation of Dynamic Core–Shell Nanoparticles Using Supramolecular Host–Guest Chemistry. Aust J Chem 2012. [DOI: 10.1071/ch12158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly(methyl methacrylate) PMMA, synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization, was heated in a solvent at 100°C for 24 h leading to the loss of the RAFT endfunctionality and the complete conversion into a vinyl group. Mono(6-deoxy-6-mercapto)-β-cyclodextrin (β-CD-SH) was subsequently clicked onto the polymer by a thiol-ene reaction leading to PMMA with one β-CD as a terminal group (PMMA70–β-CD). Meanwhile, a RAFT agent with an adamantyl group has been prepared for the polymerization of 2-hydroxyethyl acrylate (HEA) leading to PHEA95–Ada. Two processes were employed to generate core–shell nanoparticles from these two polymers: a one-step approach that employs a solution of both polymers at stoichiometric amounts in DMF, followed by the addition of water, and a two step process that uses PMMA solid particles with surface enriched with β-CD in water, which have a strong tendency to aggregate, followed by the addition of PHEA95–Ada in water. Both pathways led to stable core–shell nanoparticles of ~150 nm in size. Addition of free β-CD competed with the polymer bound β-CD releasing the PHEA hairs from the particle surface. As a result, the PMMA particles started agglomerating resulting in a cloudy solution. A similar effect was observed when heating the solution. Since the equilibrium constant between β-CD and adamantane decreases with increasing temperature, the stabilizing PHEA chains cleaved from the surface and the solution turned cloudy due to the aggregation of the naked PMMA spheres. This process was reversible and with decreasing temperature the core–shell nanoparticles formed again leading to a clear solution.
Collapse
|
49
|
Doncom KEB, Hansell CF, Theato P, O'Reilly RK. pH-switchable polymer nanostructures for controlled release. Polym Chem 2012. [DOI: 10.1039/c2py20545a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Liu M, van Hensbergen J, Burford RP, Lowe AB. Thiol-Michael coupling chemistry: facile access to a library of functional exo-7-oxanorbornenes and their ring-opening metathesis (co)polymerization. Polym Chem 2012. [DOI: 10.1039/c2py20155k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|