1
|
Xu WT, Luo Y, Zhao WW, Liu M, Luo GY, Fan Y, Lin RL, Tao Z, Xiao X, Liu JX. Detecting Pesticide Dodine by Displacement of Fluorescent Acridine from Cucurbit[10]uril Macrocycle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:584-591. [PMID: 33377764 DOI: 10.1021/acs.jafc.0c05577] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
According to a simple guest-replacement fluorescence turn-on mechanism, we constructed a fluorescent probe system based on cucurbit[10]uril (Q[10]) and protonated acridine (AD) to detect the pesticide dodine (DD). Formation of a homoternary inclusion complex AD2@Q[10] in both aqueous solution and solid state was studied by means of 1H NMR spectroscopy and X-ray crystallography. Although AD can emit strong fluorescence in aqueous solution, the homoternary inclusion complex AD2@Q[10] does not exhibit any fluorescence. Upon the addition of the pesticide DD into the aqueous solution of AD2@Q[10], the AD molecules in the Q[10] cavity are displaced by the pesticide DD, and strong fluorescence recovers. The fluorescent probe system based on Q[10] and AD provided a wide determination of DD from 0 to 4.0 × 10-5 mol·L-1 with a low limit of detection of 1.827 × 10-6 mol·L-1. The guest-replacement fluorescence turn-on mechanism is also confirmed by 1H NMR spectroscopy. Further, the fluorescent probe can directly detect DD residues in real agricultural products, and obvious fluorescence signal was observed under UV irradiation.
Collapse
Affiliation(s)
- Wei-Tao Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yang Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Wei-Wei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ming Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Guang-Yan Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ying Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
2
|
Shan PH, Kan JL, Deng XY, Redshaw C, Bian B, Fan Y, Tao Z, Xiao X. A fluorescent probe based on cucurbit[7]uril for the selective recognition of phenylalanine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118177. [PMID: 32151986 DOI: 10.1016/j.saa.2020.118177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Herein we describe a simple fluorescence quenching method for the selective recognition and determination of the amino acid phenylalanine (Phe). The use of 1H NMR spectroscopy revealed that the alkaloid palmatine (PAL) can encapsulated partially into the cavity of cucurbit[7]uril (Q[7]) in aqueous solution to form a stable 1:1 host-guest inclusion complex. This host-guest complex exhibits fluorescence of moderate intensity. Interestingly, the addition of the Phe results in a dramatic quenching of the fluorescence intensity associated with the inclusion complex. By contrast, the addition of other natural amino acids resulted in no change in the fluorescence. Based on the linear relationship between the fluorescence intensity and the concentration of Phe, the detection of the concentration of Phe in aqueous solution is facile. Thus, a new fluorescence quenching method for the recognition and determination of the Phe has established herein.
Collapse
Affiliation(s)
- Pei-Hui Shan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xin-Yu Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Carl Redshaw
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - Bing Bian
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Ying Fan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Shan PH, Zhao J, Deng XY, Lin RL, Bian B, Tao Z, Xiao X, Liu JX. Selective recognition and determination of phenylalanine by a fluorescent probe based on cucurbit[8]uril and palmatine. Anal Chim Acta 2020; 1104:164-171. [PMID: 32106948 DOI: 10.1016/j.aca.2020.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 01/06/2023]
Abstract
This paper demonstrated a simple and validated fluorescence enhancing method to selectively recognize and discriminate the amino acid phenylalanine (Phe). 1H NMR spectroscopy reveal that the palmatine (PAL) can be encapsulated into the cucurbit [8]uril (Q [8]) in aqueous solution to form stable 1:2 host-guest inclusion complex PAL2@Q [8], which exhibits moderate intensity fluorescence property. Interestingly, the addition of the Phe into the inclusion complex PAL2@Q [8] leads to dramatically enhancing of the fluorescence intensity. In contrast, the addition of any other natural amino acids into the inclusion complex PAL2@Q [8] gives no fluorescence variation. Furthermore, it is easy to detect the concentration of Phe in target aqueous solution according to the linear relationship between fluorescence intensity and concentration of the Phe.
Collapse
Affiliation(s)
- Pei-Hui Shan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jie Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin-Yu Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Bing Bian
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
4
|
Deng XY, Lü LB, Zhu QJ, Tao Z, Chen K. Identification of Ferric Ions Using a Palmatine@Q[8] Fluorescent Probe. ChemistrySelect 2019. [DOI: 10.1002/slct.201901122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Yu Deng
- Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University, Guiyang 550025 China
| | - Li Bin Lü
- Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University, Guiyang 550025 China
| | - Qian Jiang Zhu
- Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University, Guiyang 550025 China
| | - Zhu Tao
- Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University, Guiyang 550025 China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment TechnologyJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and EngineeringNanjing University of Information Science & Technology, Nanjing 210044 China
| |
Collapse
|
5
|
Lee EC, Kim HJ, Park SY. Reversible Shape-Morphing and Fluorescence-Switching in Supramolecular Nanomaterials Consisting of Amphiphilic Cyanostilbene and Cucurbit[7]uril. Chem Asian J 2019; 14:1457-1461. [PMID: 30883032 DOI: 10.1002/asia.201900204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 02/06/2023]
Abstract
We demonstrate a reversible shape-morphing with concurrent fluorescence switching in the nanomaterials which are complexed with cucurbit[7]uril (CB[7]) in water. The cyanostilbene derivative alone forms ribbon-like two-dimensional (2D) nanocrystals with bright yellow excimeric emission in water (λem =540 nm, ΦF =42 %). Upon CB[7] addition, however, the ribbon-like 2D nanocrystals immediately transform to spherical nanoparticles with significant fluorescence quenching and blue-shifting (λem =490 nm, ΦF =1 %) through the supramolecular complexation of the cyanostilbene and CB[7]. Based on this reversible fluorescence switching and shape morphing, we could demonstrate a novel strategy of turn-on fluorescence sensing of spermine and also monitoring of lysine decarboxylase activity.
Collapse
Affiliation(s)
- Eung-Chang Lee
- Laboratory for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, ENG 445, Seoul, 08826, Korea
| | - Hyeong-Ju Kim
- Laboratory for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, ENG 445, Seoul, 08826, Korea
| | - Soo Young Park
- Laboratory for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, ENG 445, Seoul, 08826, Korea
| |
Collapse
|
6
|
Chang Y, Duan X, Zhang X, Liu F, Du L. A New Fluorometric Method for the Determination of Oxaliplatin Based on Cucurbit[7]uril Supramolecular Interaction. Aust J Chem 2017. [DOI: 10.1071/ch16398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper proposed new competitive methods for fluorescence detection of the anti-cancer drug oxaliplatin. The methods were based on the competitive reaction of palmatine (PAL)/berberine (BER)/coptisine (COP) with oxaliplatin for the occupancy of cucurbit[7]uril (CB[7]) cavities. The results showed that the fluorescence intensity of PAL, BER, and COP regularly increased upon addition of CB[7] until a certain amount of oxaliplatin was added, at which stage the fluorescence intensity of the system quenched. Using the CB[7]–PAL, CB[7]–BER, and CB[7]–COP systems, linear ranges in the detection of oxaliplatin of 0.005–1.75, 0.010–1.50, and 0.020–1.05 μg mL–1, with detection limits of 2, 3, and 7 ng mL–1, respectively, were obtained. These results suggest that cucurbit[7]uril is a promising drug carrier for delivering and monitoring targeted oxaliplatin, with improved anti-tumour efficacy and reduced toxicity in normal tissues.
Collapse
|
7
|
Elbashir AA, Aboul-Enein HY. Supramolecular Analytical Application of Cucurbit[n]urils Using Fluorescence Spectroscopy. Crit Rev Anal Chem 2014. [DOI: 10.1080/10408347.2013.876354] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|